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The ER method, a finite difference method for highly dispersive linear wave
equations, is introduced and analyzed. Motivated by the problem of simulating the
propagation of microwave pulses through water, the method attempts to relieve the
computational burden of resolving fast processes, such as dipole relaxation or oscil-
lation, occurring in a material with dynamic structure. This method, based on a novel
differencing scheme for the time step, is considered primarily for problems in one
spatial dimension with constant coefficients. Itis defined in terms of the solution of an
initial value problem for a system of ordinary differential equations that, in an imple-
mentation of the method, need be solved only once in a preprocessing step. For certain
wave equations of interest (nondispersive systems, the telegrapher’s equation, and the
Debye model for dielectric media) explicit formulas for the method are presented.
The dispersion relation of the method exhibits a high degree of low-wavenumber
asymptotic agreement with the dispersion relation of the model to which it is ap-
plied. Comparisons with a finite difference time-domain approach and an approach
based on Strang splitting demonstrate the potential of the method to substantially
reduce the cost of simulating linear waves in dispersive materials. A generalization
of the ER method for problems with variable coefficients appears to retain many of
the advantages seen for constant coefficients 1999 Academic Press

Key Words:dispersive linear waves; stiff hyperbolic systems; finite difference
method; FDTD; electromagnetics waves; dispersion relation; Debye media.

1. INTRODUCTION

Many fields, such as electromagnetics, acoustics, and seismology, use linear hype
systems of partial differential equations (PDEs) as models for wave propagation. Tech
gies such as radar, sonar, and seismic imaging motivate substantial interest in the nun
simulation of linear wave phenomena. Much of the work on simulating linear waves
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emphasized nondispersive waves where the frequency components of the waves trave
common velocity. However, the extension of technologies to new applications and sim
scientific curiosity feed a growing interest in simulating dispersive linear waves.

Our interest in numerical methods for dispersive waves stems from the problem of s
ulating the propagation of microwave pulses through water. Medical applications hs
stimulated the study of this problem [1] because the electrical properties of biological
sues are to leading order those of water in the microwave regime. In dielectric materi
such as water, propagating electromagnetic waves interact with the material by indu
or aligning molecular dipoles. The macroscopic effect of these dipoles is modeled &
polarization field in the material. Dispersion arises from differences in the response of
molecular dipoles to different driving frequencies. These differences are generally un
stood in terms of the response of a damped harmonic oscillator to sinusoidal forcing.
Debye model for dielectric material, the main example considered in this paper, assu
this response is dominated by an exponential relaxation process. In the microwave reg
the Debye model for water is typically implemented with a relaxation tim@ @fo—%) s.
Microwave pulses with a carrier wave having a temporal perio® @0 °-101% s have
received attention due to their technological applications [2]. T{is0O—100) contrast be-
tween the relaxation time and carrier wave period makes the Debye model for water
and hence difficult to treat numerically. The primary motivation of the work presented he
is to mitigate this stiffness so as to reduce the computational resources needed to effect
simulate problems like the propagation of microwave pulses in water.

The FDTD Method

A widely used approach to numerical simulation of electromagnetic waves is the fin
difference time-domain (FDTD) method. Shlager and Schneider [3] give a selective sur
of the vast FDTD literature. In its original form [4], the FDTD method applied to numeric:
solution of Maxwell’s equations in nondispersive media. Various distinct extensions of
FDTD method to dispersive materials have been developed. One extension [5] is base
coupling ordinary differential equations (ODES) that describe the evolution of the pol
ization to Maxwell's equations. Another extension [6] couples an integral equation (I
to Maxwell's equations. Although the ODE and the IE formulations are mathematica
equivalent, the methods resulting from the discretization of the different formulations
distinct. An analysis of the ODE-based extension [2] provides guidelines for selecting
time and space step to control the amplitude and phase error in a simulation. A similar a
ysis [7] of the IE-based extension shows that the ODE-based approach gives a dispel
relation that agrees with that of the continuum model better at low wavenumber. For 1
reason the method of this paper is compared with the ODE-based extension of FDTI
Section 4. An IE-based method having comparable accuracy to the ODE-based appr
has been developed recently [8].

Problem Formulation

This paper examines a class of finite difference methods for linear hyperbolic system
the form

ou ou
— +A— +¢1Bu=0, 1.1
ot Thox € (3.1)
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whereu(x, t) is anN-vector depending on the spatial variakland the temporal variable

t. TheN x N real matrixA is symmetric, and th&l x N real matrixB has a nonnegative

symmetric part. When the positive parametés small, (1.1) is stiff and therefore difficult

to solve numerically with standard finite difference methods. The method of this paper
developed to produce an efficient approach to simulating solutions of (1.1) by mitigal
the effects of stiffness.

To simplify the presentation, we focus attention on the initial value problem, Q)
given) with constant coefficients (homogeneous materials) in one spatial dimension. E»
sions to inhomogeneous materials are briefly considered in Section 5; material interf
and two or more spatial dimensions will be treated elsewhere. For notational simplit
we furthermore assume that the largest and the smallest eigenvaldemef-1 and—1.
For many problems in electromagnetics (when scaled with respect to the speed of li
A naturally has this property; extension of the method to the case whée general
real-symmetric matrix is straightforward.

Stiffness

From the case where the initial data has no spatial dependence, we see that the
system of ODESI + ¢ 1Bu=0 is embedded in (1.1). Thus, we expect to find a stiff OD
solver embedded in a successful numerical method for (1.1). FDTD methods typically i
use of implicit time differencing, which is a standard approach of addressing stiff OD
These methods, however, typically make little use of the linearity of this stiff syste
Embedding the exact method available for linear systems of ODEs into a numerical me
for (1.1) would appear to provide an opportunity for improving standard finite differen
methods such as FDTD. The method for (1.1) presented in this paper accomplishes st
embedding. The ability to choose larger time steps than with other methods without lo:
accuracy is the main advantage. Because the spatiahstegusually chosen to bax = At
to suppress numerical dispersion [2], this increase in the time step allows the simulatic
proceed on a substantially coarser grid with significant improvements in efficiency. Fur
compounding of these gains with more than one spatial dimension is an attractive dire
for this work.

Solution Update by Green’s Function

Numerical methods for (1.1) usually take the form of a repeated application of an up
procedure that approximatesx, t + At) given an approximation af(x, t). The class of
finite difference methods considered here can be thought of as a quadrature formula f
exact representation of the update process in terms of the Green’s function of the hyper
system. The Green'’s function, & x N matrix depending o andt, satisfies

%(x, t) + Ag—f(x, t) +e BG(x,t) =0  fort >0, (1.2a)
G(X,0) = 18(x), (1.2b)

wherel is the N x N identity matrix ands is the Dirac delta function. In terms of the
Green’s functiorG(x, t), the exact update operator for (1.1) is given by

X+At

ux,t 4+ At) = / G(x —y, At)u(y, t) dy. (1.3)

X—At
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This representation of the solution is used in [9] to obtain estimates on the decay ¢
propagating pulse; here it is the basis of our numerical method. Assuming an expl
expression fof5(x, t) were available, application of a standard quadrature formula to (1.
would generate a numerical approximation for the update operator. In the next section
show how such a quadrature formula can be implemented even when no analytic forn
for the Green’s function is available.

Outline

Section 1 briefly identifies the scientific context of the paper, formulates the linear t
perbolic system whose numerical solution is considered, and introduces the analytical
sis for the proposed method (the Green’s function representation of the update opere
Section 2 formulates the method and demonstrates an estimate thatis needed in its ane
In Section 3, numerical errors are analyzed through comparison of the dispersion relat
for the method and the underlying model. Section 4 examines the special case of the [
agation of electromagnetic waves in a Debye material. Comparisons are made with
FDTD method. Section 5 demonstrates, through an example, that the benefits of our
merical method can be extended to the case of smooth, inhomogeneous materials. Sec
summarizes the paper, discusses the extent to which the method succeeds in mitig
stiffness, and considers issues associated with its generalization. Appendix | presents
native formulations of the method that are useful in its analysis and that suggest avel
for its extension to other problems. Appendix Il derives explicit analytical formulas for tf
method in some important special cases. Appendix Il compares our method to one b:
on Strang splitting.

2. FORMULATION OF THE EP 4 METHOD

In this section we formulate the method of this paper as a quadrature formula for (1
This formulais exact for low-degree polynomials (the specific degree depending on a met
parameter). Hence, the method is exact for low-degree polynomial initial data. From 1
characterization the method obtains its designationyyEihich is a shorthand foréxact
for polynomialinitial data of degreel.” The form of the method is that the future values of
the fields are computed as linear combinations of past values of the fields. The coeffici
of these linear combinations are given in terms of the solutions of a system of ODEs
this sense, the method is based on a novel time differencing scheme.

Numerical Framework

The numerical framework considered is typical of finite difference methods. Specifica
we seek to devise a method that accurately and efficiently approximates the sampled soll
ur,

U = u(nAx, mAt) m=0,12,...andn=...,-2,-1,0,1,2, ...,
whereu is a solution of (1.1), and\x and At are fixed positive numbers. We indicate a

numerical approximation df" by u' and the grid pointa Ax andmAt by x, andty,. We
seek a method in the form of an update procedure taking the approximate solution at
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time level (" for all n) and giving the approximate solution at the next time lewgtt
for all n). Such a procedure with sampled initial dat§ for all n) completely defines an
approximate solution.

We restrict our attention to explicit linear methods with a fixed finite domain of depe
dence. In particular, we suppose tht* depends linearly ofup, ,: —P < p< P}, where
P is a positive integer. Such methods can always be written in the form

um+t — Z MpUp, - (2.1)
p=—P

where eactMp is anN x N matrix. Thus, the method will be completely specified by th
2P + 1 matricesM_p, ..., Mp.

Method Definition

The matrices defining the gnethod withd = 2P arise from a quadrature formula for
estimating the integral in (1.3) in terms of the available déta,, . .., uy, . A character-
izing property of this quadrature formula is that it is exact when applied to data obtainec
sampling anyN-vector-valued polynomial of degred”2or less atx,_p, ..., X,.p. There
are three steps in the construction of this quadrature formula: (1) The uNieuextor-
valued polynomial of degreeR2or less interpolating the pointsi{; p, U, ,) with p=
—P, ..., Piscomputed. (2) The Green’s function is applied to this polynomial to advar
the solution through a period of timet. (3) The resulting updated solution is evaluated «
Xy to giveum 1,

The polynomial interpolating. p, U, ;) with p=—P, ..., P has a representation of
the form
2P 1
D =g — X, (2.2)
q=0 @

where thea,’s are N-vectors. Computing tha,’s is a standard problem,

P
ay = Z Dgp(AX)Un4p, (2.3)

p=—P

where the matrix with entriggl Dq is the inverse of th@P + 1) x (2P + 1) Vandermonde
matrix V with entriesVyq = (pAx)9, wherep=—P, ..., P andq=0, ..., 2P. Theqth
row of the matrixD (having entriesDqp) contains the weights for a standard centere
difference approximation of thgth derivative. When needed, we use the convention th
Dgp=0forq> 2P and for|p| > P.

To propagate the interpolating polynomial (2.2) through an interval of titneve apply
the Green’s function as indicated in (1.3) to obtain

Xn—At

2P 1 Xn+At
qu{/ G(x — Y, At)(y — xn) dy|ay. (2.4)
q=0 "



204 JONATHAN H. C. LUKE
Evaluating at, to getu™?, we obtain

2P
uptt =) " Wy(Abag, (2.5)
q=0

where theN x N matricesW, ..., W,p are given by

Xn+At 1 At

Wy (At) = —,/ G(Xn — Y, AD)(Y = xp)Tdy = —,/ G(-y, At)yddy. (2.6)
a° Jx,—at q: J-at

Combining (2.3) and (2.5) gives an explicit formula for the matrices defining the EP

method:

2P
Mp(AX, At, P) = > " Wy (At) Dgp(AX). (2.7)
q=0

We note that (2.7) separates the differencing in space from that in time. Thus, ther
considerable latitude to change the spatial differencing to serve special purposes.

Evaluation of the \i/s

The representation of the EPmethod in (2.7) is useful as a practical tool only to the
extent that th&\;’s can be readily calculated. Because an explicit expression for the Gree
functionG is not generally available, direct evaluation of iNg's is usually infeasible. We
use an approach based on a system of linear ODEs with constant coefficients satisfie
the W;’s. With the conventiorW_, =0, we find

Wy + AWy_1 + e 1BW; = 0, (2.8a)
Wo(0) = I, (2.8b)
W;(0) =0 q=>1 (2.8¢)

This system can be obtained by differentiating (2.6) with respegittapplying the dif-
ferential equations defining the Green’s function (1.2), and integrating by parts. Beca
G may be singular or even a generalized function, these operations must be performe
terms of the theory of distributions in the most general case.

Because th&\y's satisfy a linear system of differential equations with constant coeff
cients, they can be represented exactly in terms of the exponential of a constant matrix
M be the matrix of the constant coefficient linear system (2.8a). This block lower triangu
matrix containg2P + 1)2 N x N blocks. Every block entry on the main diagonatis B;
every block entry on the principle subdiagonalAsall remaining block entries are the
N x N zero matrix. It follows thag~"At equals

B 0 ... ... 0 Wo o ... ... 0
€A B At Wi Ve .

exp| —| 0 eA . . — | = W, W, . . ], (29
: . B 0 : S Wy O

0 ... 0 €A B Wop Wp_1 -+ Wi W
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Thus, the computation of thé/,’s and the computation of exp M At) are equivalent.
Numerical exponentiation of a matrix is not a wholly resolved problem [10, 11]. Nonetl
less, a simplistic analysis of the “scaling and squaring method” gives a sense of how
effort to compute th&\Vy's increases as — 0. This method is based on scaling the argt
ment of the exponential using the formula éxpVI At) = [exp(—M At /2)]?; its iterative
use allows computation of the desired exponential from that of a matrix with a small nc
through repeated squaring. Because the normvofs O(e~?) for smalle, the effort to
compute exp—MAt) grows like O(log,(1/¢)). Thus, the effort needed to compute the
Wy’s grows at a very modest rate as> 0.

The matrix M falls into a class of matrices that Moler and Van Loan [10] identify &
problematic for exponentiation; specificallyf typically has defective eigenvalues of high
multiplicity. This difficulty is somewhat mitigated by the block triangular Toeplitz structul
which significantly simplifies matrix products. In the case of homogeneous materials ¢
sidered here, only one setdf;’s needs to be computed to define theERmethod. Thus,
the computation of th&\,'s is a very small part of the overall effort. For inhomogeneou
materials, where a separate sedd@f's may be needed for each point on the spatial gric
the efficiency of this computation becomes a more significant issue, particularly in se\
spatial dimensions.

A Bound on the Ws

Bounds on the size of thé/;'s are useful in analysis of the EPmethod. In this paper
the size of a matrix is measured by its spectral norm (applied to a mdtrilkis norm,
denoted| M ||, is the square root of the largest eigenvaludid¥*). Applied to symmetric
matrices this norm equals the spectral radius of the matrix.

From (2.8) it follows thatVp(At) = exp(—e 1BAt) and

At
Wy (AL = — / e BA9/C AW, 4(s)ds  forg > 1. (2.10)
0
Hence, whemg > 1,
At
IWg (A < / e BA9/ | Wy_y(9)]] ds (2.12)
0

since|| A|| = 1. Moreover, we limit our analysis to the case whBr&s diagonalizable; that
is, we assume thdd = FBABFgl, whereA g is diagonal and the columns B§ are linearly
independent eigenvectors Bf In this case we have the inequaligxp(—Bs/¢)|| <« (I'g)
for s> 0, wherex (I'g) = ||FB||||Fg1|| because the real parts of the eigenvalue8 afre
nonnegative. This bound applied to (2.11) gives

k(Fg)dt1Atd

[Wo(AD < ql

forg > 0. (2.12)
Two features of this inequality are significant. One, the power sgquq converges
for all complex valueg. Two, the right-hand side of (2.12) is independen¢ ahat is, the
bound is uniform ine. When B is not diagonalizable, a generalization of (2.12) assur
convergence of the power series, but the bound is no longer unifoenwimen zero is a
defective eigenvalue ds.
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3. ANALYSIS OF DISPERSION RELATIONS

In this section we investigate the fPmethod by comparing its dispersion relation with
that of the model (1.1). This comparison leads to a non-Hermitian eigenvalue perturba
problem. For simplicity, analysis is limited to the more generic cases. Nonetheless, we s|
that the dispersion relation of the EPmethod generally approximates that of the mode
better than that of a finite difference methods using finite-order time differencing.

Dispersion Relations

For evolution equations with constant coefficients, the dispersion relation describes |
the Fourier components of the initial data evolve in time. Comparison of the dispers
relation of a linear model with that of a numerical method for the model is a stande
approach for evaluating finite difference methods. To facilitate comparisons we denote
dispersion relation for (1.1) by, that for the ER> method (2.7) byw; and that for any
finite difference method using finite-order time differencing, such as FDTy.by

The model (1.1) has solutions of the fourgx, t) = ve ®~“Y wherev is a constant vector
(possibly complex)k is a real scalar (the wavenumber), and a complex scalar (the fre-
qguency). Giverk, we can findv andw by solving the eigenvalue probleth A—iB)v = wv.
Hencew (k) is generally a multivalued function &fwith N branches denoted lay, (k). A
numerical method of the form (2.1) has solutions of the foffn= v ®AX"-AtM _ Gjyen
k, we can findv"ande by solving the eigenvalue probleM? = e '¥At5, where

M= Mpekaxp, (3.1)
p

When theM,'’s are given by (2.7), we have (usiridy, =0 for q > 2P),

Mk) = "W, (Z que‘kAXP> = WDq(k). 3.2)
q=0 P q=0

BecauseM (k) andk A— i e 1B are analytic functions dfon the complex plane, it follows
[12] that the dispersion relations, (k) andw, (k), are branches of analytic functionslof
with only algebraic singularities. Whddg is a point of singularity, the dispersion relation
will be O(Jk — ks|¥’™), wherem is an integer satisfying 2 m < N; hence, the dispersion
relation is a continuous function &f It will become significant in our analysis that these
singularities occur only at points where the matrix is not diagonalizable.

Application of Dispersion Relations

In general we wania, (k) — w,(K)| to be small. The way that this “smallness” is as-
sessed depends on the application of interest. Our analysis focuses on the situation v
appropriate numerical parametersy, At, andP) are sought given the model parameters
(A, B, ande), initial data (io(x)), and a certain kind of criterion for acceptable errors ir
the dispersion relation. We consider criteria that identify a maximum wavenumber of
terestky (usually from the initial data) and impose a bound (possibly dependirg on
| (K) — w, (K)| for k satisfying|k| < ky . Subject to this bound, the numerical parameter:
are then chosen to maximize efficiency (or possibly convenience). The case when this ct



DISPERSIVE LINEAR WAVES 207

can be made independently©fs of interest, as then we are assured that the performar
of the method does not seriously deteriorate as 0.

By choosing a maximum wavenumber of interest, we accept that Fourier componen
the initial data with larger wavenumbers may be badly mispropagated. This acceptanc
sumes that these Fourier components do not grow significantly in the numerical simula
Thus, we generally require that the method be stable for the full range of wavenum
representable on the numerical grid. In our formulation this kind of stability correspol
to Im(@(K)) <0 for |k| <z /AX. Because solutions of (1.1) are often decaying in time,
stronger condition may be needed to ensure that the decaying solution of interest i
swamped by high wavenumber components that spuriously decay more slowly. Spe
criteria will depend on the problem of interest.

Zero Wavenumber Analysis

Whenk =0 we are considering the evolution of constant initial data governed by
system of ODESI+ ¢ 1Bu=0. Hence, the dispersion relation of a numerical method
k =0 is areflection of the quality of the ODE solver embedded in the method. Because
method is exact for polynomial data of ordd? &r less (which includes constant data), we
havew; (0) = w, (0) regardless of the value aft ande. In sharp contrast, when finite-order
time differencing is used, say of orderw; (0) — we(0) = O (1, At?/e9+Y), wherep, is the
¢th eigenvalue oB. Thus methods based on finite-order time differencing regiirg
to be small to ensure accuracykat 0. We note, however, that in many applications it i
common foru, to vanish for several values 6fFor solutions dominated by these branche:
finite-order time differencing is not so severely handicapped. An example of this situat
the Debye model, is considered in the next section.

Small Wavenumber Asymptotics

A basic property of many standard finite difference methods applied to theBcage
is that their dispersion relations substantially agree with the dispersion relation of
hyperbolic system (1.1). This agreement has the form of exact equality of the first
Taylor coefficients of the dispersion relations expandddahoutk = 0. For examplep (k)
for the simple scheme

m+-1 m m m
tn = U AU“HZA;“’l e BUM =0 (3.3)
agrees witho (k) to O(k') whenB =0 (even though the scheme is unstable). Higher ord
methods typically give higher order agreement. This agreement is an expression o
exceptional suitability of standard finite difference methods for the Bas®.

As noted earlier, this agreement evaporates for finite difference methods using finite-c
time differencing wheiB # 0. For the method of (3.3}, (0) — w, (0) =i log(1 — At /€)/

At +iug/e. Whenu, = O(1), w,(0) andw,(0) are approximately equal only whext /¢

is small. In the following, we show that the method of (2.7) preserves agreement betw
all branches of the numerical and model dispersion relation at small wavenumbers v
B £ 0; typically, &, (K) — wg (k) = O(k?P+1).

Reformulation ofv (k)

Reformulating the eigenvalue problem fork) to more closely resemble that fa(K)
simplifies comparison of these dispersion relations. The exact update operator (Al.5
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solutions of the formu(x, t) = ve ®*==V; hence,Hv = e 1*®Aty, where
Hk) = Wy(ik)“. (3.4)
q=0

Convergence is ensured by (2.12) or the observatiortiii = exp[—(i Ak + ¢ ~1B) At].

Eigenvalue Perturbation Problem

We have characterized, (k) andw, (k) in terms of the eigenvalues da?f(k) and I\7I(k).
Our strategy for showing thdt, (k) — w,(k)| is small is based on demonstrating that
I1H (k) — M (K) || is small. Assuming is diagonalizable, we show that for any wavenumbe
cutoffky, and any constar@ > 0 we can ensure

IH () — MK < CKPFL for K| < ky (3.5)
with proper choice ofAt and Ax. Moreover, this choice can be made independentby. of

Estimation of the Matrix Perturbation

To begin the derivation of (3.5), we recall the&tcan be written as the sum of its Taylor
polynomial of degree R and a remaindeR,p(z)—a holomorphic function satisfying
|Rq(2)| < 29+1€? /(d 4 1)! for all complex values of. Applying this decomposition to the
definition oflﬁq(k), found in (3.2), gives

Dq(k) = > Dgp€ P = (ik)¥ + >~ DgpRap (ikAXP), (3.6)
p p

where we have used the relati®n, Dgp(pAX)" = €!q,, which follows from the definition
of the Dpg's in terms of the inverse of the Vandermonde mavfixThus,

2P 00
MK — H(K) =D Wq > DgpRop(ikAxp) — Y We(ik)9. (3.7)
q=0 p q=2P+1

We note that there is a constaftdepending only orP such thatzp |Dgpl < K/[AX].
Assuming the CFL conditionnt < P Ax, we apply the bound ofiWy || given in (2.12) and
the bound on the remaind&:p to (3.7) to obtain

«(T'g) (|k|AX P)ZP+1
(2P + 1)!

||I\7I(k)— I:I(k)|| < [Ke/(PHk\AxP+K2P+leKPAx\k\] (3.8)

This bound is independent efand applies for all values & Moreover, giverC > 0 and
km < oo we can obtain the estimate (3.5) by appropriate choicaxf{which constrains
the choice ofAt through the hypothesized CFL condition).

Estimation of the Eigenvalue Perturbation

To estimatgw (k) — @(K)| using (3.8), we make use of a result of matrix perturbatior
theory that bounds the perturbation in the eigenvalues given a bound on the perturbatic
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the matrix (see [13, Thm. 6.3.2]): LEtandE be square matrices (wilhz*F ' diagonal)
and)r* be an eigenvalue df + E; then there is an eigenvalueof F such that

A" = Al = (TR)IEI (3.9)

wherex (I'g) = ||FF||||F;1|| is the condition number of the matrix of eigenvectorsrof
WhenF is not diagonalizable, we defingI"r) = co. Application of (3.9) with (3.5) gives

|@¢ (K) — ¢ (K)| < min(k (T, € (T)CKPT for [K| < ky, (3.10)

wherel'y; andI'y; are the matrices of eigenvectors fdrandH, respectively.

Implications for Numerical Errors

WhenB is diagonalizablel (0) = H (0) = exp(—BAt) is also. Thusg (T'y;) andx (T'g)
are bounded as functions &fis some neighborhood d&f=0. Hence,|&(k) — w (k)| =
O(k2P*1) for smallk. In applications where the components of the solution with larg
wavenumbers rapidly decay in time, this result indicates that the long-time solution ¢
puted using this numerical method will be highly accurate especially for larger vallRes ¢
(assuming that th® ,4's have been accurately computed).

Because€ = O(Ax2P*+1), we are tempted to characterize the metho®asx?P+1). For
many practical purposes this characterization is indeed correct. There are some situa
probably not very significant in applications, where this characterization is technically in
curate. These exceptional situations arise through the dependeviaarof x. Specifically,
there may be wavenumbers for which @iql"y ), « (I')) is not bounded aax — 0. Since
min(k (T'y), €« (Cg)) <« (T'y), this consideration is necessary only at those discrete valt
of k for which H (k) is nondiagonalizable. Lel;, J,, ..., J. be open intervals containing
the wavenumberk where H (k) is nondiagonalizable. It follows that, — w,)/Ax2P+1
is uniformly bounded on-{ky, km] — Uk_, J,. The practical implication is that the error
in the method iSO(AXx2P+1) when we can neglect the components of the solution ha
ing wavenumbers near those makiﬁgk) nondiagonalizable. Other methods, such as tt
FDTD method, suffer a similar diminished performance at these wavenumbers.

4. NUMERICAL AND MODEL DISPERSION RELATIONS FOR THE DEBYE MODEL

This section focuses on an important example of (1.1), the Debye model for disper
dielectric media. The Debye model has the form of (1.1) with

010 0 0 O
A=|100| ad B=[0 a -b], 4.1)
000 0 -a b

wherea and b are positive constants satisfyireg+- b= 1. The dispersion relations for
the model, for the EP method and for a standard FDTD method, are considered ¢
compared. A similar but abbreviated comparison of the Eethod with a method based
on Strang splitting is found in Appendix Ill. Our analysis suggests that thenkhod
offers significant improvements in efficiency and accuracy over standard FDTD approa
to the Debye model.
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FIG. 1. The real and imaginary parts of the three branches of the dispersion relation for the Debye mc
with b=0.01.

Dispersion Relation for the Debye Model

The dispersion relatiom (k) for the nondimensionalized Debye model given in (4.1)
satisfies the cubic equation

w?*(w~+i/€) —k?(w+ib/e) = 0. (4.2)

Two branches ofv (k), denotedw, (k) andw_ (k), correspond to forward and backward
propagating waves. Since the Debye model is invariant under reversal of the spatial coc
nate, Réw,) = —Re&(w_) and Imw, ) =Im(w_). The third branch, denoted,(k), whose
real part vanishes at all wavenumbers, corresponds to honpropagating disturbances
decay exponentially in time at a wavenumber-dependent rate.

Figure 1 shows the real and imaginary parts of the dispersion relatiorbwith 01, a
value approximately corresponding to parameter values used for water in the microw
regime (e.g., in [2] we find=0.0123). The upper panel of this figure shows only the
real part ofw,. The dispersion relation for the Debye model has a substantial amount
structure including singularities at the points markeahdg. These points, associated with
double roots of (4.2), are

a=+vbl-b—b*+0®% and p= %[1 +b+20%+ 0(b%]. (4.3)

Expanding the three branches of the dispersion relation for small wavenumbers gives

(1 —5b)(1—b)
8vb

(ek)* + O((ek)®), (4.4a)

ewy = £vV/b(ek) —i 1;2b(ek)2 F (ek)®

- 2b)(1—b)
—i—=—
ewp = —i +i(1—b)(ek)2+i(1—2b)(1— b)(ek)* + O((ck)®). (4.4b)
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The very lowwavenumber behavior of the dispersion relation for the propagating bran
is that of the convection diffusion equation + bwy = %e(l — b)wxx. Petropoulos [14]
observes that this PDE governs the long-time behavior of the Debye model becaus
components of the solution, except those associated with the low wavenumber portio
the propagating branches, decay with@¢ 1) exponential rate.

Fora < €k < B all branches of» correspond to nonpropagating modes. On this interv
the notationsv. andwg are somewhat inappropriate; the branches are better classifie
terms of the rate of decay associated with them. For many applications these modes
little interest because they do not propagate.

For large wavenumbers, the phase velocity of the propagating branches converg
unity and the associated modes decay like exp] — b)/(2¢)]. The nonpropagating mode
decays like expftb/e].

Small Wavenumber Analysis of Method Dispersion Relations

For the ER method, the eigenvalue problemi|d =e A5 with M given in (3.1),
determines the dispersion relatien|fi the case® = 1, emphasized in this sectioNl can
be derived explicitly by applying (All.7) to (3.2). Explicit formulations of the eigenvalu
problem for the dispersion relatian of the FDTD method of [5] are given in [2, 7]. In
this section, we restrict our analysis to the cade= Ax. This is the usual situation as a
unit Courant number is generally used to minimize numerical dispersion [2]. The anal
is presented in terms of the parameler At/e. Discrepancies between the dispersiol
relations of the model{) and a numerical method (0t ») indicate the magnitude and the
nature of errors that the method introduces. Formulas for the small wavenumber beh
of w andw facilitate comparison with the model dispersion relatign

_ 2 _ _ 2
€Wy — €wy = —M(ek)3 +i (1-bd-3ph (€k)* + O((ek)®), (4.5a)
24 24
_ _ 2
€wp — ewp = —i12h?Fy(h) —i d b)(]:!-Z 3o (ek)* + O((ek)®), (4.5b)
1—b)/bh? 1— b)bh?
€y — ewy = —%Fz(h)(ek)3 —i %Fg(h)(ek)‘h}— O((ek)®), (4.5¢)
_ 3
€y — €wg = | %(ek)“—i— O((ek)®), (4.5d)
where
Fuhy = 12291+ W/ (hZZ —hl/h-1 (4.62)
—h _ _ 1h2 _ 1K3
Fa(h) = 24° ( hh:r "= &%) : (4.6b)
Fah) 12[1+ (1+bh+ ih?je™ — [1+bh— (3 +b)h?+ (1 +b)h® — 1bh?]
3 = .
bh?
(4.6c)

To leading order each of thE's equals oneFi(h) =1+ O(h?), Fo(h) =1+ O(h),
and F3(h) =1+ O(h). The leading order error in the propagating modés, — w..| and
|t — w+|, is O(k3h3) for the ER method andD (k3h?) for the FDTD method. The leading
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order error in the nonpropagating mod®g — wo| and |wo — wo|, is O(k*h®) for the ER
method andO(k°h?) for the FDTD method. That the error in the FDTD method enter
at such low order irk for the nonpropagating mode indicates that it treats this moc
very inaccurately; nonetheless, for many applications this is of little significance becal
the nonpropagating mode decays very rapidly. Hence, we focus on the performanc
the methods for the propagating modes. For the propagating mode, the low wavenun
asymptotics suggest the principle difference between the methods is thattheel®d is
better than the FDTD method by a factortof

Order One Wavenumbers with=P1

To see the extent that this behavior persists for order one valué&swé defineC (ek, h)
andC(ek, h) by

Refed (ek, h) — ewi(ek)] = )\/_C( k, h)(ek)®h®, (4.7a)

Refeawy (ek, h) — ewy (ek)] = _d-bvb b)‘/—C( k, h)(ek)3h?. (4.7b)

If ¢ andC were uniformly bounded for all wavenumbers of intereshas O then the
phase error of the ERnethod would indeed b® (h®), while the phase error of the FDTD
method would be (h?). The scaling chosen givé‘é(o, 0= 5(0, 0) =1. Numerical com-
putation ofC andC for values ofh tending to zero indicates that these functions ten
to limiting functions, C(ek, 0) andC(ek, 0), ash — 0. With a=0.99 andb=0.01, nu-
merical approximations of the logarithm of the absolute value of the limiting function
log|C(ek, 0.02)| and IogC(ek 0.1)|, are plotted in Fig. 2. Different values bfare used

in these two plots to obtain reasonable approximations of the limiting curve while mi
imizing the effects of round-off error. A difference in the nature of round-off errors i
expected a€ is computed through division Hy? while C is obtained through division by
h2. Computations with values &f ranging fromh = 1.0 to h = 0.001 indicate these both
reasonably represent the limiting functions. Plots for smaller valuédsaf not shown
because large numerical errors resulting from round-off distort these plots. The effec
these errors can be seen in Fig. 2 for small valuds: oNumerical sampling and the finite

3.0

0.0

log |C(ke, 0.02)}

-3.0

6.0

o
0.0 W
6.0
0

~o.

log |C(ke,0.1)|

FIG.2. Numerical approximations of the limit functions, I&ke, 0) and IogG(ke, 0)|, showing the nature
of the phase error for small valuestaf
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values oth make the cusps shown in Fig. 2 finite; numerical evidence suggests that actt
C(a, 0)=C(B, 0) = C(a, 0) = C(B, 0) = 00. Thus, neithe€ nor C is uniformly bounded.
Nonetheless, Fig. 2 suggests titand C are uniformly bounded on [A] — (J, U Jp),
where J, and Jg are open intervals containing the points of singulagitgnd 8, respec-
tively. The nonuniformity of convergence neaandg arises from differences between the
location of the singularities in dispersion relations for the model and the numerical meth
Figure 2 suggests that this mislocation is less severe for theekhod than for the FDTD
method. MoreoverC is quite small for larger values ek. The analogous study of the
imaginary part yields similar results. The practical conclusion of these consideratior
that, applied to the Debye model with waves not having a significant amount of energ
wavenumbers near/e or 8/¢, the phase error in the EPnethod isO(h%) while that in
the FDTD method i©(h?).

Phase Error for Various Values of P

Seeking to confirm the general analysis of Section 3 for the Debye modePwith, we
compute the dispersion relatioasandw by numerical solution of the eigenvalues problem
for H and M with a=0.99 andb=0.01. The comparison of the numerically compute
values ofw andw'is made somewhat difficult by the extreme smallness of« for smaller
values oh; that s, for larger values d® and modest values bf @ — w vanishes to machine
accuracy (standard double precision). Of course, the difficulty of distinguishing from
zero in finite precision arithmetic reflects the very high level of accuracy of theriefhod.
With €k < &, no meaningful difference betweanahdw is found for values oh < 5.0. In
this wavenumber regime, solutions generated by ther&@hod using as few as six grid
points per wavelength are expected to proceed at near machine accuracy.

For ek > B, a small discrepancy betweanahdw can be found numerically. Figure 3
is a log—log plot of the real part @ = » versush with ek =1.0. We examine this graph
to determine the degree to which it agrees with the result of the previous section
the ERp method hasO(h?P*1) error for smallh. We suppose thab = » goes to zero
ash and use the values @f = w computed forh €[0.2, 1.0] to estimatenp; we find
n1=3.96,1,=5.92, n3="7.87, n4=9.83, andys = 11.8. For P > 1, these values indicate
rates of convergence almost one order better 9&h’"+1). We do not interpret these
results as saying that the method performs better than the theoretical predictions. R
we believe that the rate of convergence decreases whew s examined for smaller

0.001 0.010 0.100 1.000

FIG. 3. Numerically computed values of the phase erf@g(@ — )|, versush for several values oP and
ek=1. Forh <0.1 andP > 2, the computed error is virtually zero to machine accuracy.
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values ofh. For P =1, this hypothesis has been verified. B 1, verification has not
been performed due to our inability to distinguieh-w from zero in double precision
arithmetic. Figure 2 foreshadowed this result, as the coeffi€nt 0.02) seems to be
very small. That the attempt to confirm the theoretical error estimates for thenEthod
numerically falls prey to round-off error in this way demonstrates that for larger values
P the method can be expected to perform near machine accuracy. Actual errors expe
in computations using the method should generally be dominated by round-off error rat
than discretization error.

Performance forAt/e > 1

One potential application for the method of this paper is numerical computation in t
regime whereAt/e > 1. Numerical experiments with the Debye modak0.99 and
b =0.01) indicate roughly the same accuracy for the FDTD method and for thenefhod
in the limite — 0 with At held constant. This result is consistent with the low wavenumbe
analysis of the dispersion relation obtain from (4.5a) and (4.5c) in thedimitO:

(1- b)«/BAt2k3.

ot (4.8)

szt_wj::z(a):t_w:t):_

Both methods hav®(At?) errors for the Debye model when— 0. A similar analysis
for simple Strang splitting indicates larg At) errors (see Appendix Il1). Although this
example suggests the EPnethod offers no advantages over the FDTD method whe
At/e > 1, a closer examination reveals situations where thg lB€thod gives superior
performance in this regime.

The key to identifying these situations is the observation that the errors reported in (¢
appear to be due to grid dispersion associated with a lack of alignment of the characteri
of the limiting model with the grid (x,, tm)}; that is, we cannot expect any method using
the ER or basic FDTD stencils to give significantly better results. To strip away the effec
of grid dispersion, we make comparisons in a case where the limiting characteristics
aligned with the mesh. Such a case is the Debye model avtt8/4 andb=1/4; the
limiting speed isvb=1/2. With At =2Ax and P = 2, the characteristics of the limiting
solution are aligned with the grid, and numerical computations of the update matrices for
EP, method strongly indicate that they converge to the update matrices of an exact met
whene — 0 andAt and Ax are fixed. Moreover, numerical computation of the dispersiol
relation shows that the method is stabledgr O.

Aligning the grid with the characteristics of the FDTD method without violating the CF
condition may require widening the spatial stencil, which can be done in more than
way. One such extension of the FDTD method has the form

m+1 _ ym-1
Un Un

2At

m+1 m—1
Un + Un

+A> wjun,, +B o

J

=0, (4.9)

where thew;’s are scalars defining a finite difference approximation for the spatial deriv
tive. The FDTD method is usually implemented on a staggered grid to take advantag:
the structure ofA and B; however, this transformation to a staggered grid for the sake
efficiency does not affect the analytical properties of the method.
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In the limit e — O, the general solution of the Debye model is
u(x, t) = (vb, b, a)! f (x — vbt) + (—vb, b, a)'g(x + vbt). (4.10)

Assuming thatAt = 2AX, it can be shown that the limiting form of (4.9) supports thes
solutions if and only ifw; = 1/2AX, w_1 =—1/2AX, andw; =0 for j ¢ {—1, 1}. Hence,
within this extended FDTD framework, there is a unique sewg$ that gives an exact
method in the limit — 0. With thesew;’s, however, the method is unstable tos 0. The
origin of the instability is that with these;’s waves travel at a speed of no more thaf ih
the numerical computations, while the maximum signal speed of the model is 1. Henc
is impossible for the numerical computations to converge to the solution of the hyperb
system no matter how fine the mesh is made.

For the Debye model wita=3/4 andb=1/4, we find that both the EfPand FDTD
approaches can provide methods that converge to an exact method in the-infit For
€ > 0, the ER method is stable, but the FDTD method is unstable. The failure of the FD’
approach to provide a stable method converging to an exact method in the-lintseems
to stem from the rigidity of having the;’s set independently af. In any case, this example
demonstrate that there are situations where ther&&hod offers significant advantages
over the FDTD method for computation in the regite/e > 1.

5. EXTENSION FOR MATERIALS WITH SMOOTH INHOMOGENEITIES

In the applications to electromagnetics motivating this work, the electrical proper
of materials are generally encoded in the maBixand these properties typically vary in
space. Hence, we are interested in extending thenk#hod to the case of inhomogeneou
materials wher® depends omn. Here we limit attention to situations wheBds a relatively
smooth function ok.

WhenB is a constant matrix and the initial data are a polynomial, we have seen that
solutions of (1.1) are polynomials with time-dependent coefficients. Because this struc
is lost whenB depends orx, there is some ambiguity in generalizing £® the inhomo-
geneous case. One approach is to use the method that advances polynomial data of
d exactly for a single time step. A second approach is based on having solutions o
form of power series with time-dependent coefficients wBeis analytic. The approach
we consider here is based on the recursion relation given in (Al.7) and (Al.9).

An Extension for Inhomogeneous Materials

For simplicity we consider only the cafe= 1; that is, for each poimn, in the spatial grid,
we seek matrice®l_;(n), Mo(n), andM; (n) that are to be used to update the solution at th
gridpoint. That a separate set of update matrices may be needed for each gridpoint in
that memory limitations and the cost of generating the update matrices will be signific
considerations in implementations. To generate the update matrices for aSnesth
grid spacingAx we use a collection of refined mesh8s S, ..., Sr, each having grid
spacings one-half of the one before. On the finest nSpskpdate matrices are generated &
each gridpoink; assuming thaB(x) = B(x;); that is, the formulas for generating update
matrices in the homogeneous case, (2.7) and (2.9), are used with the material prop
found atx;. The recursion formula given in (Al.7) and (Al.9) is then applied to genera
the update matrices for the coarser meshes including the mesh of irBgrest
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We note a few of the properties of the method generated by this algorithBhidfa
constant the algorithm produces the originabElPdate matrices as defined by (2.8) anc
(2.9) onthe coarsest grig). In general, the update matrices on the coarseMdgi¢h) depend
on the values oB(x) for values ofx € {x, +£AXx/2T :¢=-2T,1-2T .. . 2T —1,2T}.
The computational effort needed to generate the update matrices on the coarse g
proportional to 2. The computation can be arranged to avoid storing the update matrices
the fine grids; hence, the memory required to generate the method is essentially that ne
to store the update matrices for the coarse grid. We limit our analysis of this algorithm t
numerical example.

A Numerical Example

In our example, a pulse is scattered from a material inhomogeneity surrounded by |
space. We study the error in the transmitted wave at a certain pointin space-time as afun
of the numerical parameters, the grid spacixig and the truncation level . As before,
At = Ax. The initial data in the experiment angx, 0) = 256(x — 1)*(x — 2)*(1, 1, 0) for
x €[1, 2] andu(x, 0) =0 for x ¢ [1, 2]. These initial data give rise to a purely rightward
propagating pulse which impinges on an inhomogeneity supported on the interval [3,
The inhomogeneity is a Debye material=£ 0.99 andb = 0.01) where spatial variations
enter througle: 1/e(x) = 2560x — 3)*(x — 4)*.

We determined the numerically computed estimates of the first compona(,dt.7)
for 45 combinations of the numerical parametérand Ax. Specifically, we use all com-
binations wherd € {4, 6, 8,10, 12} andAx € {0.1x2"|n=0,1,2, 3,4,5,6,7,8}. The
numerically computed values of the first component@, 2.7) are very nearly given by

0.212

0.183102359F ——AX — 0.00325Ax2 — 0.0819A X3 — 4.6AX*. (5.1)

Using the FDTD method for the same problem and valueaxfresults in numerically
computed estimates of first componenu@, 2.7) very nearly given by

0.183102359- 2.56A X2 + 2.04Ax> — 77.9Ax%. (5.2)

Figure 4 shows both the numerically computed values and curves given by (5.1) and (-
For the purposes of our discussion these formulas are an excellent characterization o
numerically computed values.

Interpretation of the Numerical Experiments

The main result from these experiments is that for practical valuaspthe estimate of
the first component ai(5, 2.7) given by the extension of the Emethod is far better than
the estimate given by the FDTD method. As shown in Fig. 4, the accuracy of the exten
EP; method is better than that of the FDTD method whex> 0.01 even wherT =4.
For the larger values of the extended EPmethod gives a more accurate estimate thal
the FDTD method forAx = 0.000390625—the smallest value afx considered in this
experiment. The practical point here is illustrated by the observation that using the E
method withT =12 andAx = 0.1 the solution is accurate to three decimal places, whil
the FDTD method requires a mesh refined by a factor of eight to obtain the same accur
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FIG. 4. Convergence of the numerically computed magnetic field values-#.0 andt = 2.7 for extensions
of the ER method and the FDTD method. The solid lines are the fitted formulas given in (5.1) and (5.2).

The significant difference in the accuracy of the methods is reflected in the three-orc
of-magnitude disparity between the coefficients of the quadratic terms in (5.1) and (¢
Although this analysis examines but a single point in the solution of a single exampl
suggests that the extendedgRethod potentially offers substantial advantages for prac
cal computations which are typically run on grids having less than one hundred gridpc
per wavelength.

Comparisons of Resource Requirements

The advantages of using coarser grids than the FDTD method normally allows are par
offset by the additional resource requirements of the extendgariefhod. The amount of
memory used per gridpoint is larger for the extended ERethod due to the need to store
separate update matrices for each gridpoint in the inhomogeneity. The number of arithr
operations needed to update the solution at a gridpoint is greater by roughly a factor of
Most significantly, the cost of generating the update matrices is substantial for the exte
EPy method (more than 2% 2T matrix multiplications per gridpoint) but negligible for
the FDTD method. But we emphasize that this cost is paid only once, and not at each
step. Moreover, once the method has been generated for a given material configurati
can be used repeatedly for different initial data. Nonetheless, more efficient algorithm:
generating the update matrices are needed.

Further Extensions

Because the derivation of the recursion relation given in (AL.7) and (Al.9) assumes
the fields have a polynomial structure in space, we do not expect this extension to per
wellin situations where the spatial structure of the fields is not approximated well by alo
order polynomial. This occurs when there are sharp gradients in the material propertie
the extreme case of a jump discontinuity in the material properties, the extension ofithe
method considered here fails to converge when— 0. The development of alternative
extensions is needed for the treatment of material interfaces.
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The extension of the basic ERmethod to hyperbolic systems in several spatial variable
is straightforward. However, the simple fact that the number of gridpoints neighboring
given point scales as the radius of the neighborhood to the power of the spatial dimen
magnifies some of its disadvantages in more than one spatial dimension. Because the nu
of update matrices associated with a gridpoint equals the number of neighboring gridpoi
the memory requirements for storing these matrices can be substantial. Moreover, s
the update procedure involves multiplying each of these update matrices by a vector,
computational cost of applying the method grows rapidly with the stencil radius. Of cour
the hope is that the ability to compute accurate solutions on meshes with dramatically fe
grid points will overcome the somewhat high cost in memory and computation associe
with each gridpoint.

6. SUMMARY AND COMMENTS

Summary

The reported need [2] for very fine meshes to resolve microwave pulses propagatin
water motivated the development of thesgRethod for the stiff dispersive waves equa-
tion (1.1). From the point of view that fine meshes are needed because of the stiff syste
ODEs, U + ¢ 1Bu=0, embedded in the problem, we are naturally drawn to consider hc
to incorporate the exact solution of this system of ODEs(eX#t/¢)u(0), into a method
for (1.1). Our development of the EPnethod stems from considering the action of the
Green'’s function on interpolating polynomials. Four alternative formulations of the El
method (Appendix 1) provide information useful for its analysis and suggest approacl
for its generalization. A defining characteristic of thegERethod is that it is exact when
applied to polynomial initial data of degreke Our general analysis of the PEiethod is
based on comparing its dispersion relation with that of the model solution to be simula
numerically. This comparison shows that in the generic case thg BEthod has errors
that areO (Ax2P*+1k?P+1) for Ax andk small. In the case of the Debye model, a fuller anal-
ysis, including comparisons with the FDTD method and Strang splitting (Appendix 111
is available owing in part to explicit represtation of the,ERethod (Appendix Il). This
analysis demonstrates advantages of thg EEthod over both the FDTD method and
Strang splitting for both large and small valueshof At /e and confirms the expectation
that very high accuracy can be achieved on practical meshes particularifPwith. For
media with smooth inhomogeneitieB @& smooth function ok), an extension of the EP
method is defined and compared to the FDTD method in an example. For meshes
practical grid spacing, the extension gives significantly better performance than the FD
method.

Mitigation of Stiffness

The ER method is intended to mitigate the effects of stiffness in numerical simulatiol
of the solutions of (1.1) whenis small. For methods such as the FDTD method, obtainin
accurately computed solutions often requires that the timesstdge small compared with
€. This restriction onAt easily leads to a prohibitively large requirement for computa
tional resources when the desired computation time is large compate®ur detailed
considerations are limited to the Debye model. In the reghh& « 1, the ER method
relieves the effects of stiffness, allowing larger time steps than for the FDTD method; t
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is, even though we suppogé « ¢, the time step need not be as small as for the FDT
method to achieve the same level of accuracy. In the regityie > 1, the error for both the
FDTD method and the EFRmethod are bounded independentlyeafith At = Ax fixed.
However, in an example where the grid is aligned with the characteristics of the limit
wave equation, we show that the error for the Biethod can go to zero with This result

is not possible with the FDTD method without loss of stability éor 0. Hence, we have
shown that there are situations where thg BRethod gives better performance than thi
FDTD method whemt > ¢. A more complete characterization of these situations anc
fuller assessment the quality of the Efethod in these situations are needed.

Extensions of the EPMethod

Our presentation focuses on theggRethod for homogeneous materials in one spatial c
mension. Naturally, these considerations are intended to form the foundation for exten:
treating inhomogeneities, interfaces, and several spatial dimensions. One of several po
extensions to smoothly varying inhomogeneous materials is introduced in Section 5.
though analysis is limited to a numerical example, the potential of the extension to pro
highly accurate solutions on relatively coarse grids is clear. More general analysis of
possible extensions to inhomogeneous materials is needed. Equally important is the
for algorithms that efficiently generate the update matrices for these extensions. Althc
interpolation by multivariate polynomials presents some complications, generalizatio
the ER method to several spatial dimensions is straightforward. For homogeneous me
als, much of the analysis of Section 3 generalizes to several spatial dimensions as wel
large gradients in the material properties including material interfaces the proper gene
tion of the ER method is less obvious. Seeking a quadrature formula for the represente
of the update operator in terms of the Green'’s function seems an attractive approach
major change is that we can no longer expect the spatial structure of the fields to be lo
approximated by polynomials. To be acceptable, an alternative representation of this s
structure must give rise to an accurate quadrature formula that can be incorporated ini
general method without undue difficulty or cost. With the ability to handle both smooth
discontinuous inhomogeneities in several spatial dimensions, thenéthod could serve
as the basis for a general purpose code for simulating linear waves.

Computational Resources

The generization of the ERmethod to inhomogeneous materials in several spatial (
mensions places two substantial burdens on computational resources: (1) Generation
update matrices requires a very significant amount of arithmetic. (2) Storing the up
matrices during a simulation is the dominant memory requirement of the method. In
paper the main approach to generating update matrices is based on (2.9), which requir
exponentiation of a large matrix. Even for inhomogeneous materials the matrix is hig
structured. Exploiting this structure in the matrix exponentiation seems a very promis
approach to easing the burden of computing the update matrices. The alternative app
to generating the update matrices, based on the recursion formula given in (Al.7) and (A
has the unpleasant property that the amount of arithmetic needed roughly doubles with
application of that formula. The potential for dramatically improving the efficiency of th
algorithm is obvious. The memory needed to store the update matrices is substantia
electromagnetics problems in three spatial dimensions the memory requirements fo
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update matrices could easily exceed those for the fields by a factor of one hundred. In
trast, the storage requirements of the FDTD method are often little more than the mernr
needed for the fields. Maintaining memory parity between the methods requires that
grid spacing of the EPmethod must be about a factor of five larger than that of the FDT]
method. We note, however, that for many problems the memory requirements of the |
method can be substantially reduced. When there are large regions in the simulation dol
where the material properties are constant, most of the gridpoints within such a region
share a single set of update matrices. Taking advantage of this structure can dramati
reduce both the cost of generating the update matrices and the memory needed to
them. Issues concerning computational resources will necessarily play an important rol
the future development of the EPnethod.

APPENDIX |

Alternative Formulations of the EPop Method

Four alternative formulations of the k> method provide useful information for its
analysis and paths for its extension.

Local Polynomial Interpolation

This procedural formulation closely resembles that of the previous section except inst
of using the Green’s function to propagate the interpolating polynomial we use a syst
of ODEs describing the evolution of its coefficients. We use three steps to deteritihe
fromupl p, ..., ul}p: (1) Find the interpolating polynomial (2.2). (2) Use this polynomial
as initial data and solve (1.1) exactly. (3) Evaluate this solutiohn=aAt andx = x, to
obtainu™. The second step is accomplished using the observation that with polynomn
initial data the solution of (1.1) is a polynomial whose coefficients evolve according to t
system of ODESy + Aaq11+¢ 1Bag=0.

Limit of Finite Difference Methods

Truncation of Taylor series is a standard approach to generating finite difference meth
We obtain (Al.1a) by truncating the Taylor series fai, t + At) after T 4+ 1 terms and
using (1.1) to substitute space derivatives for time derivatives. Expandagx + B)¢ as
a polynomial ind/9x gives (Al.1b). Reversing the order of summation yields (Al.1c):

T 19t . (=D* 1 ¢
—— (X, )AL A— "B | u(x, t)At Al.la
> g 0 z( Juocoar

T ¢
- At) sz (x t) (Al.1b)

4

T T
(— At)‘Z 99u
=y (Z )m(x,t). (Al.1c)

q=0 =

Il
o

Replacing the spatial derivatives by the finite difference approximations represeridggd by
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gives a family of finite difference methods indexedbynd P:

i1 min(T,2P) ( At)e
U "= Z Z 7l Zq ZquUn+p (Al.2)

q=0 =0 p=—P

The primary result concerning this family of methods is that for a fixed value tife
method given in (Al.2) converges to the fsPmethod asl — oo (with the corresponding
value ofP). A derivation of this result can be based on the following properties a fhe

Zoo =1, (Al3&)

Zyy=0 g<0orqg>¢, (Al.3b)

Zii1q = Zeg-1A+ € 1ZqB = AZyg1+ € 1B Zy. (Al.3c)

From these relation<Z,o, . .., Zs,op can be identified with the first block column af9.

This identification, the representation of tg’s as the first block column of exp M At)
given in (2.9), and the Taylor series representation of this exponential give the Ta
representation ofVy (At):

(= )e

Wy (AL) = Z zgqm‘z (Al.4)

£=0

Applying (Al.4) to (Al.2) and comparing with (2.7) confirm that the method defined in (Al.:
converges to the method defined in the previous section Wherpo. This characterization
of our method allows us to consider it a finite difference method with a spectrally accu
time-differencing scheme.

Exact Update Operator as an Exponential

The ERp method can be derived from the formal exponential representation of the up
operator. The exact update operator for (1.1), in terms of an exponential, is formally g

by

Ux, t + At) = e—<A<<”/3X>+f’1B)Atu(x, t) (Al.5a)
[ee] ¢
= Z (A +e—1B> Atfu(x, t) (Al.5b)
(=0 ¢!
= qu(m)—(x t), (Al.5¢C)
q=0

where we have made use of (Al.4) to obtain (Al.5c). ThegEmethod can be obtained
from this representation of the exact update operator by replacing the spatial de
tives @9/0x9) in (Al.5c) by finite difference approximations given in terms of (Bgy’s.
This formulation gives a simple characterization of Wg's as the Taylor coefficients of
exp[-(Az+ ¢ 1B)At] expanded irz aboutz=0.
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Multigrid Interpretation

A multigrid formulation of the ER> method can be developed based on its character
zation as the only method of the form (2.1) that is exact when applied to polynomials
degree P or less. For simplicity, we restrict our attention to the cRse 1. We show how
to computeM,(2Ax, 2At) for p=—1, 0, 1 givenM,(AX, At) for p=—1, 0, 1. lterative
use of this procedure allows us to derive the method for a coarse grid given the metho
a fine grid. The point, of course, is that ordinary finite difference methods give accur
approximations of the E8 method on sulfficiently fine grids.

Repeated use of (2.1) relat@8*? tou™ ,, u™ ,, uM, u™ ,, ulm, ,,

Unm+2 = K_zunm_z + K_1Unm_1 + Kounm + Klunm+1 + K2unm+2v (AlL6)
where

Kp= Z Mp_¢(AX, AD)M,(AX, At) (AL.7)
l

and M, =0 for |p|> P =1. The update formula (Al.6) is exact when the five values
up,, ..., uy,, are obtained by sampling a quadratic polynomial. Moreover, in this ca:
un_, anduyp’, , are related to the other three sampled values:

1
Upt1 = - Un + SUpt2 — S Ung2. (AL8)

4 8 8
Elimination ofu™, ; from (Al.6) gives a method for computing!*2 from the three values
up,, uy', upl, which is exact when the data is obtained from quadratic polynomials. Sin
the method of interest is the only method with this property, we have

3 3
Mo(2AX, 2At) = ZK_l + Ko + ZK]_, (AI9a)

3 1
Mi1(2AX, 2At) = Ko + éKil - é K;;]_. (A|9b)
The case of generd proceeds similarly. The computations become increasingly tedious
P increases, but they are easily automated. We note that this formulation is closely rel:

to an addition formula for th&\V;’s:

q
Wty +t2) = > W(t) Wy (o). (A1.10)
¢=0
APPENDIX Il

Analytic Expression of the ERp Method in Special Cases

In three important cases, the matrices defining thg-ERethod can be computed ana-
Iytically using (Al.4): the case wher@ and B commute, the telegrapher’s equation, anc
the Debye model for electromagnetic propagation in dielectric materials. For each c:
we derive explicit analytic formulas for the matricég, W;, andW,. These formulas are
sufficient to define the method in the cad®e- 1, and they allow for more complete analysis
of the method in these special cases.
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Commuting Matrices

When A andB commute, AB= B A, we have

g (Az+B)At/e _ o—BAt/eq—AtAZ (All.2)

It follows from (AL.5) that

(=D

Wy (At) = 4

e BAVEAIALY, (All.2)

The Telegrapher’s Equation

The telegrapher’s equation is equivalent to (1.1) with

01 a o0
A:(l 0) and B:(O b), (All.3)

wherea andb are nonnegative constants satisfyag b= 1. Lettingu = (a—b)/2, we
haveB = %I + uH, whereH is the 2x 2 diagonal matrix with diagonal elements 1 anc
—1. FromA?=H?=1 andAH + H A=0 we find

l
Zio = exp<—§6t) <’:) HY, (All.4a)
At 1
Z = exp<—2€> <’:> Axo(0), (All.4b)
ool 5 ) (%) e
Zir = zexp[ =2V (H) HE2(0 = 400, (All.4c)
2 2¢ €

whereyq, is the indicator function for the odd integerg (q) = 1 whenq is odd integer and
Xo(q) =0 otherwise). Lep = uAt/e; summation of (Al.4) yields

Wo(At) = exp(—it)[(coshp)l — (sinhp)H], (All.5a)
Wi(At) = —< exp(—§> (sinhp) A, (AlL.5b)
7 2¢

2
Wh(AL) = ZE—MZ exp(—?—S) [(o sinhp)l + (sinhp — pcoshp)H].  (All.5c)

The Debye Model

The Debye model is defined in (4.1). It is easy to confirm thAdt= A, BAB=0,
B A’B =aB, andB? = B. We note that the relatioB AB= 0 seems to be characteristic of
models of dielectric materials. From these relations it follows from (Al.3) that

€9Zp0=B g>1, (All.6a)
€9Zq1 =€(AB+BA q>2 (All.6b)
€9Zp = “(ABA+ A°B+BA?+(q—3)aB) q=>3. (All.6c)
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Direct summation of (Al.4) yields

Wo(At) = | + B(e 2V — 1), (All.7a)
At
Wi(Al) = —AtA+e(AB+BA) (e‘“/f —1+ —>, (AlL7b)
€
1 At At2
Wa(At) = EAtzA2 +€%(A’B + ABA+ BAY) {e‘m/f e ﬁ}
€ €
At 2At  At?
JrezaB{—e‘A‘/e (— + 3> +3- "4 —2} (All.7¢c)
€ € 2¢

It is interesting thaW,, Wy, andW, have nontrivial limiting values whea— 0*.

APPENDIX Il

Comparison with Strang Splitting

When AB# B A much of the computational difficulty associated with (1.1) can b
viewed as arising from the failure of the identity ex§jAd/dx + e 1B)At] = exp[- Ad/
axAt]exp[—e 1BAt]; that is, the exact update operator for+ Au, +€¢Bu=0 is not
the update operator far, +¢~1Bu=0 followed by that foru; + Au, = 0. In such situa-
tions, Strang splitting, which in the simplest case approximates-&xaf/dx + ¢ 1B) At]
by exp[-e 1BAt/2] exp[— Ad/dx At] exp[—e 1BAt/2] to third-order accuracy, is a nat-
ural approach. This approach suggests that the update operatprfaku, + ¢ *Bu=0
is approximated well by (1) applying the update operatoufer ¢ ~2Bu =0 for a half time
step, (2) applying the update operator @i+ Auy = O for full time step, and (3) applying
the update operator far, +¢~*Bu=0 again for a half time step. A special attraction of
this approach is that the gPnethod is exact for botty + Au, =0 andu; + ¢ *Bu=0in
many cases including the Debye model. In these case an exact implementation of St
splitting in the form (2.7) can be given with

(=D" _Bat2e at o BAt/2e
W, = e Ale . (AllL1)

For this version of Strang splitting applied to the Debye model, we derive the Ic
wavenumber asymptotics of the dispersion relation of the mathod —

- .1—Db[hcoshh/2)
cox = Vhiek) —i = [Zsinr'(h/Z)

h coshth/2)
2sinhth/2)

} (ek)? + O((ek)®) (Alll.2a)

ewg=—i +i(1—b) { ] (ek)? + O((ek)h. (Alll.2b)

We compare this with the low wavenumber expansiorfagiven in (4.4):

24b[h2 + 0(hH](ek)? + O((ek)®), (Alll.3a)

Ecgi — EWw4 = —i

€wo — €wy = | 11%2b[h2 + 0(hH](ek)? 4+ O((ek)*). (Alll.3b)
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Hence, Strang splitting is at beSt(h?) for small h. Moreover, the error i©(k?) rather
than O(k®) as shown in (4.5c) and (4.5d) for the ERethod and as shown in (4.5a) for
the propagating branches of the FDTD method. However, comparing (4.5b) and (Alll.
shows that Strang splitting treats the nonpropagating branches somewhat better th
FDTD method.

In the limite — 0, we find the dispersion relation for Strang splitting is

1-b _ 1-b
Atk and  wg= —i +i

ws = Vbk—i Atk (AllL4)
Thus, in the smalk limit, the error for Strang splitting is no better th&y At). These
results are consistent with our numerical experience with broadband pulses in the re
wheree « 1. In this regime, we find that the dominant error in solutions computed w
the ER and FDTD methods is a®(At?) phase error arising from grid dispersion while
the dominant error in solutions computed with Strang splitting is an amplitude error 1
filters out the high wavenumber components of the solution. Even qualitatively cor
numerical solutions can not be obtained in this regime using this simplest version of St
splitting without hundreds of gridpoints per wavelength. Despite being exact when apg
to constant initial data, the simplest version of Strang splitting is generally inferior to b
the ER and FDTD methods.
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