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The EPd method, a finite difference method for highly dispersive linear wave
equations, is introduced and analyzed. Motivated by the problem of simulating the
propagation of microwave pulses through water, the method attempts to relieve the
computational burden of resolving fast processes, such as dipole relaxation or oscil-
lation, occurring in a material with dynamic structure. This method, based on a novel
differencing scheme for the time step, is considered primarily for problems in one
spatial dimension with constant coefficients. It is defined in terms of the solution of an
initial value problem for a system of ordinary differential equations that, in an imple-
mentation of the method, need be solved only once in a preprocessing step. For certain
wave equations of interest (nondispersive systems, the telegrapher’s equation, and the
Debye model for dielectric media) explicit formulas for the method are presented.
The dispersion relation of the method exhibits a high degree of low-wavenumber
asymptotic agreement with the dispersion relation of the model to which it is ap-
plied. Comparisons with a finite difference time-domain approach and an approach
based on Strang splitting demonstrate the potential of the method to substantially
reduce the cost of simulating linear waves in dispersive materials. A generalization
of the EPd method for problems with variable coefficients appears to retain many of
the advantages seen for constant coefficients.c© 1999 Academic Press
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1. INTRODUCTION

Many fields, such as electromagnetics, acoustics, and seismology, use linear hyperbolic
systems of partial differential equations (PDEs) as models for wave propagation. Technolo-
gies such as radar, sonar, and seismic imaging motivate substantial interest in the numerical
simulation of linear wave phenomena. Much of the work on simulating linear waves has
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emphasized nondispersive waves where the frequency components of the waves travel at a
common velocity. However, the extension of technologies to new applications and simple
scientific curiosity feed a growing interest in simulating dispersive linear waves.

Our interest in numerical methods for dispersive waves stems from the problem of sim-
ulating the propagation of microwave pulses through water. Medical applications have
stimulated the study of this problem [1] because the electrical properties of biological tis-
sues are to leading order those of water in the microwave regime. In dielectric materials,
such as water, propagating electromagnetic waves interact with the material by inducing
or aligning molecular dipoles. The macroscopic effect of these dipoles is modeled as a
polarization field in the material. Dispersion arises from differences in the response of the
molecular dipoles to different driving frequencies. These differences are generally under-
stood in terms of the response of a damped harmonic oscillator to sinusoidal forcing. The
Debye model for dielectric material, the main example considered in this paper, assumes
this response is dominated by an exponential relaxation process. In the microwave regime,
the Debye model for water is typically implemented with a relaxation time ofO(10−11) s.
Microwave pulses with a carrier wave having a temporal period ofO(10−9–10−10) s have
received attention due to their technological applications [2]. ThisO(10–100) contrast be-
tween the relaxation time and carrier wave period makes the Debye model for water stiff
and hence difficult to treat numerically. The primary motivation of the work presented here
is to mitigate this stiffness so as to reduce the computational resources needed to effectively
simulate problems like the propagation of microwave pulses in water.

The FDTD Method

A widely used approach to numerical simulation of electromagnetic waves is the finite
difference time-domain (FDTD) method. Shlager and Schneider [3] give a selective survey
of the vast FDTD literature. In its original form [4], the FDTD method applied to numerical
solution of Maxwell’s equations in nondispersive media. Various distinct extensions of the
FDTD method to dispersive materials have been developed. One extension [5] is based on
coupling ordinary differential equations (ODEs) that describe the evolution of the polar-
ization to Maxwell’s equations. Another extension [6] couples an integral equation (IE)
to Maxwell’s equations. Although the ODE and the IE formulations are mathematically
equivalent, the methods resulting from the discretization of the different formulations are
distinct. An analysis of the ODE-based extension [2] provides guidelines for selecting the
time and space step to control the amplitude and phase error in a simulation. A similar anal-
ysis [7] of the IE-based extension shows that the ODE-based approach gives a dispersion
relation that agrees with that of the continuum model better at low wavenumber. For this
reason the method of this paper is compared with the ODE-based extension of FDTD in
Section 4. An IE-based method having comparable accuracy to the ODE-based approach
has been developed recently [8].

Problem Formulation

This paper examines a class of finite difference methods for linear hyperbolic systems of
the form

∂u

∂t
+ A

∂u

∂x
+ ε−1Bu = 0, (1.1)
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whereu(x, t) is anN-vector depending on the spatial variablex and the temporal variable
t . TheN × N real matrixA is symmetric, and theN × N real matrixB has a nonnegative
symmetric part. When the positive parameterε is small, (1.1) is stiff and therefore difficult
to solve numerically with standard finite difference methods. The method of this paper was
developed to produce an efficient approach to simulating solutions of (1.1) by mitigating
the effects of stiffness.

To simplify the presentation, we focus attention on the initial value problem (u(x, 0)

given) with constant coefficients (homogeneous materials) in one spatial dimension. Exten-
sions to inhomogeneous materials are briefly considered in Section 5; material interfaces
and two or more spatial dimensions will be treated elsewhere. For notational simplicity,
we furthermore assume that the largest and the smallest eigenvalues ofA are+1 and−1.
For many problems in electromagnetics (when scaled with respect to the speed of light),
A naturally has this property; extension of the method to the case whereA is a general
real-symmetric matrix is straightforward.

Stiffness

From the case where the initial data has no spatial dependence, we see that the stiff
system of ODEṡu + ε−1Bu= 0 is embedded in (1.1). Thus, we expect to find a stiff ODE
solver embedded in a successful numerical method for (1.1). FDTD methods typically make
use of implicit time differencing, which is a standard approach of addressing stiff ODEs.
These methods, however, typically make little use of the linearity of this stiff system.
Embedding the exact method available for linear systems of ODEs into a numerical method
for (1.1) would appear to provide an opportunity for improving standard finite difference
methods such as FDTD. The method for (1.1) presented in this paper accomplishes such an
embedding. The ability to choose larger time steps than with other methods without loss of
accuracy is the main advantage. Because the spatial step1x is usually chosen to be1x = 1t
to suppress numerical dispersion [2], this increase in the time step allows the simulation to
proceed on a substantially coarser grid with significant improvements in efficiency. Further
compounding of these gains with more than one spatial dimension is an attractive direction
for this work.

Solution Update by Green’s Function

Numerical methods for (1.1) usually take the form of a repeated application of an update
procedure that approximatesu(x, t + 1t) given an approximation ofu(x, t). The class of
finite difference methods considered here can be thought of as a quadrature formula for an
exact representation of the update process in terms of the Green’s function of the hyperbolic
system. The Green’s function, anN × N matrix depending onx andt , satisfies

∂G

∂t
(x, t) + A

∂G

∂x
(x, t) + ε−1BG(x, t) = 0 for t > 0, (1.2a)

G(x, 0) = I δ(x), (1.2b)

where I is the N × N identity matrix andδ is the Dirac delta function. In terms of the
Green’s functionG(x, t), the exact update operator for (1.1) is given by

u(x, t + 1t) =
∫ x+1t

x−1t
G(x − y, 1t)u(y, t) dy. (1.3)
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This representation of the solution is used in [9] to obtain estimates on the decay of a
propagating pulse; here it is the basis of our numerical method. Assuming an explicit
expression forG(x, t) were available, application of a standard quadrature formula to (1.3)
would generate a numerical approximation for the update operator. In the next section, we
show how such a quadrature formula can be implemented even when no analytic formula
for the Green’s function is available.

Outline

Section 1 briefly identifies the scientific context of the paper, formulates the linear hy-
perbolic system whose numerical solution is considered, and introduces the analytical ba-
sis for the proposed method (the Green’s function representation of the update operator).
Section 2 formulates the method and demonstrates an estimate that is needed in its analysis.
In Section 3, numerical errors are analyzed through comparison of the dispersion relations
for the method and the underlying model. Section 4 examines the special case of the prop-
agation of electromagnetic waves in a Debye material. Comparisons are made with the
FDTD method. Section 5 demonstrates, through an example, that the benefits of our nu-
merical method can be extended to the case of smooth, inhomogeneous materials. Section 6
summarizes the paper, discusses the extent to which the method succeeds in mitigating
stiffness, and considers issues associated with its generalization. Appendix I presents alter-
native formulations of the method that are useful in its analysis and that suggest avenues
for its extension to other problems. Appendix II derives explicit analytical formulas for the
method in some important special cases. Appendix III compares our method to one based
on Strang splitting.

2. FORMULATION OF THE EP d METHOD

In this section we formulate the method of this paper as a quadrature formula for (1.3).
This formula is exact for low-degree polynomials (the specific degree depending on a method
parameter). Hence, the method is exact for low-degree polynomial initial data. From this
characterization the method obtains its designation “EPd,” which is a shorthand for “exact
for polynomialinitial data of degreed.” The form of the method is that the future values of
the fields are computed as linear combinations of past values of the fields. The coefficients
of these linear combinations are given in terms of the solutions of a system of ODEs. In
this sense, the method is based on a novel time differencing scheme.

Numerical Framework

The numerical framework considered is typical of finite difference methods. Specifically,
we seek to devise a method that accurately and efficiently approximates the sampled solution
Um

n ,

Um
n = u(n1x, m1t) m = 0, 1, 2, . . . andn = . . . ,−2, −1, 0, 1, 2, . . . ,

whereu is a solution of (1.1), and1x and1t are fixed positive numbers. We indicate a
numerical approximation ofUm

n by um
n and the grid pointsn1x andm1t by xn andtm. We

seek a method in the form of an update procedure taking the approximate solution at one
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time level (um
n for all n) and giving the approximate solution at the next time level (um+1

n

for all n). Such a procedure with sampled initial data (u0
n for all n) completely defines an

approximate solution.
We restrict our attention to explicit linear methods with a fixed finite domain of depen-

dence. In particular, we suppose thatum+1
n depends linearly on{um

n+p: −P ≤ p≤ P}, where
P is a positive integer. Such methods can always be written in the form

um+1
n =

P∑
p=−P

Mpum
n+p, (2.1)

where eachMp is anN × N matrix. Thus, the method will be completely specified by the
2P + 1 matricesM−P, . . . , MP.

Method Definition

The matrices defining the EPd method withd = 2P arise from a quadrature formula for
estimating the integral in (1.3) in terms of the available dataum

n−P, . . . , um
n+P. A character-

izing property of this quadrature formula is that it is exact when applied to data obtained by
sampling anyN-vector-valued polynomial of degree 2P or less atxn−P, . . . , xn+P. There
are three steps in the construction of this quadrature formula: (1) The uniqueN-vector-
valued polynomial of degree 2P or less interpolating the points (xn+p, um

n+p) with p=
−P, . . . , P is computed. (2) The Green’s function is applied to this polynomial to advance
the solution through a period of time1t . (3) The resulting updated solution is evaluated at
xn to giveum+1

n .
The polynomial interpolating (xn+p, um

n+p) with p= −P, . . . , P has a representation of
the form

2P∑
q=0

1

q!
aq(x − xn)

q, (2.2)

where theaq’s areN-vectors. Computing theaq’s is a standard problem,

aq =
P∑

p=−P

Dqp(1x)un+p, (2.3)

where the matrix with entriesq!Dqp is the inverse of the(2P + 1) × (2P + 1) Vandermonde
matrix V with entriesVpq = (p1x)q, wherep= −P, . . . , P andq = 0, . . . , 2P. Theqth
row of the matrixD (having entriesDqp) contains the weights for a standard centered
difference approximation of theqth derivative. When needed, we use the convention that
Dqp = 0 for q > 2P and for|p| > P.

To propagate the interpolating polynomial (2.2) through an interval of time1t , we apply
the Green’s function as indicated in (1.3) to obtain

2P∑
q=0

1

q!

[ ∫ xn+1t

xn−1t
G(x − y, 1t)(y − xn)

q dy

]
aq. (2.4)
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Evaluating atxn to getum+1
n , we obtain

um+1
n =

2P∑
q=0

Wq(1t)aq, (2.5)

where theN × N matricesW0, . . . , W2P are given by

Wq(1t) = 1

q!

∫ xn+1t

xn−1t
G(xn − y, 1t)(y − xn)

q dy = 1

q!

∫ 1t

−1t
G(−y, 1t)yq dy. (2.6)

Combining (2.3) and (2.5) gives an explicit formula for the matrices defining the EP2P

method:

Mp(1x, 1t, P) =
2P∑

q=0

Wq(1t)Dqp(1x). (2.7)

We note that (2.7) separates the differencing in space from that in time. Thus, there is
considerable latitude to change the spatial differencing to serve special purposes.

Evaluation of the Wq’s

The representation of the EP2P method in (2.7) is useful as a practical tool only to the
extent that theWq’s can be readily calculated. Because an explicit expression for the Green’s
functionG is not generally available, direct evaluation of theWq’s is usually infeasible. We
use an approach based on a system of linear ODEs with constant coefficients satisfied by
theWq’s. With the conventionW−1 = 0, we find

Ẇq + AWq−1 + ε−1BWq = 0, (2.8a)

W0(0) = I , (2.8b)

Wq(0) = 0 q ≥ 1. (2.8c)

This system can be obtained by differentiating (2.6) with respect to1t , applying the dif-
ferential equations defining the Green’s function (1.2), and integrating by parts. Because
G may be singular or even a generalized function, these operations must be performed in
terms of the theory of distributions in the most general case.

Because theWq’s satisfy a linear system of differential equations with constant coeffi-
cients, they can be represented exactly in terms of the exponential of a constant matrix. Let
M be the matrix of the constant coefficient linear system (2.8a). This block lower triangular
matrix contains(2P + 1)2 N × N blocks. Every block entry on the main diagonal isε−1B;
every block entry on the principle subdiagonal isA; all remaining block entries are the
N × N zero matrix. It follows thate−M1t equals

exp

−


B 0 · · · · · · 0

ε A B
. . .

...

0 ε A
. . .

. . .
...

...
. . . B 0

0 · · · 0 ε A B


1t

ε

 =



W0 0 · · · · · · 0

W1 W0
. . .

...

W2 W1
. . .

. . .
...

...
...

. . . W0 0

W2P WP−1 · · · W1 W0

 . (2.9)
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Thus, the computation of theWq’s and the computation of exp(−M1t) are equivalent.
Numerical exponentiation of a matrix is not a wholly resolved problem [10, 11]. Nonethe-
less, a simplistic analysis of the “scaling and squaring method” gives a sense of how the
effort to compute theWq’s increases asε → 0. This method is based on scaling the argu-
ment of the exponential using the formula exp(−M1t) = [exp(−M1t/2)]2; its iterative
use allows computation of the desired exponential from that of a matrix with a small norm
through repeated squaring. Because the norm ofM is O(ε−1) for small ε, the effort to
compute exp(−M1t) grows like O(log2(1/ε)). Thus, the effort needed to compute the
Wq’s grows at a very modest rate asε → 0.

The matrixM falls into a class of matrices that Moler and Van Loan [10] identify as
problematic for exponentiation; specifically,M typically has defective eigenvalues of high
multiplicity. This difficulty is somewhat mitigated by the block triangular Toeplitz structure
which significantly simplifies matrix products. In the case of homogeneous materials con-
sidered here, only one set ofWq’s needs to be computed to define the EP2P method. Thus,
the computation of theWq’s is a very small part of the overall effort. For inhomogeneous
materials, where a separate set ofWq’s may be needed for each point on the spatial grid,
the efficiency of this computation becomes a more significant issue, particularly in several
spatial dimensions.

A Bound on the Wq’s

Bounds on the size of theWq’s are useful in analysis of the EP2P method. In this paper
the size of a matrix is measured by its spectral norm (applied to a matrixM this norm,
denoted‖M‖, is the square root of the largest eigenvalue ofM M∗). Applied to symmetric
matrices this norm equals the spectral radius of the matrix.

From (2.8) it follows thatW0(1t) = exp(−ε−1B1t) and

Wq(1t) = −
∫ 1t

0
e−B(1t−s)/ε AWq−1(s) ds for q ≥ 1. (2.10)

Hence, whenq ≥ 1,

‖Wq(1t)‖ ≤
∫ 1t

0
‖e−B(1t−s)/ε‖‖Wq−1(s)‖ ds (2.11)

since‖A‖ = 1. Moreover, we limit our analysis to the case whereB is diagonalizable; that
is, we assume thatB = 0B3B0−1

B , where3B is diagonal and the columns of0B are linearly
independent eigenvectors ofB. In this case we have the inequality‖exp(−Bs/ε)‖ ≤ κ(0B)

for s≥ 0, whereκ(0B) = ‖0B‖‖0−1
B ‖ because the real parts of the eigenvalues ofB are

nonnegative. This bound applied to (2.11) gives

‖Wq(1t)‖ ≤ κ(0B)q+11tq

q!
for q ≥ 0. (2.12)

Two features of this inequality are significant. One, the power series
∑

qWqzq converges
for all complex valuesz. Two, the right-hand side of (2.12) is independent ofε; that is, the
bound is uniform inε. When B is not diagonalizable, a generalization of (2.12) assures
convergence of the power series, but the bound is no longer uniform inε when zero is a
defective eigenvalue ofB.
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3. ANALYSIS OF DISPERSION RELATIONS

In this section we investigate the EP2P method by comparing its dispersion relation with
that of the model (1.1). This comparison leads to a non-Hermitian eigenvalue perturbation
problem. For simplicity, analysis is limited to the more generic cases. Nonetheless, we show
that the dispersion relation of the EP2P method generally approximates that of the model
better than that of a finite difference methods using finite-order time differencing.

Dispersion Relations

For evolution equations with constant coefficients, the dispersion relation describes how
the Fourier components of the initial data evolve in time. Comparison of the dispersion
relation of a linear model with that of a numerical method for the model is a standard
approach for evaluating finite difference methods. To facilitate comparisons we denote the
dispersion relation for (1.1) byω, that for the EP2P method (2.7) by ˜ω, and that for any
finite difference method using finite-order time differencing, such as FDTD, by ¯ω.

The model (1.1) has solutions of the formu(x, t) = vei (kx−ωt), wherev is a constant vector
(possibly complex),k is a real scalar (the wavenumber), andω is a complex scalar (the fre-
quency). Givenk, we can findv andω by solving the eigenvalue problem(k A− i B)v = ωv.
Hence,ω(k) is generally a multivalued function ofk with N branches denoted byω`(k). A
numerical method of the form (2.1) has solutions of the formum

n = ṽei (k1xn−ω̃1tm). Given
k, we can find ˜v andω̃ by solving the eigenvalue problem̂M ṽ = e−i ω̃1t ṽ, where

M̂ =
∑

p

Mp eik1xp. (3.1)

When theMp’s are given by (2.7), we have (usingDqp = 0 for q > 2P),

M̂(k) =
∞∑

q=0

Wq

(∑
p

Dqp eik1xp

)
=

∞∑
q=0

Wq D̂q(k). (3.2)

BecauseM̂(k)andk A− i ε−1B are analytic functions ofk on the complex plane, it follows
[12] that the dispersion relations, ˜ω`(k) andω`(k), are branches of analytic functions ofk
with only algebraic singularities. Whenks is a point of singularity, the dispersion relation
will be O(|k − ks|1/m), wherem is an integer satisfying 2≤ m≤ N; hence, the dispersion
relation is a continuous function ofk. It will become significant in our analysis that these
singularities occur only at points where the matrix is not diagonalizable.

Application of Dispersion Relations

In general we want|ω̃`(k) − ω`(k)| to be small. The way that this “smallness” is as-
sessed depends on the application of interest. Our analysis focuses on the situation where
appropriate numerical parameters (1x, 1t, andP) are sought given the model parameters
(A, B, andε), initial data (u0(x)), and a certain kind of criterion for acceptable errors in
the dispersion relation. We consider criteria that identify a maximum wavenumber of in-
terestkM (usually from the initial data) and impose a bound (possibly depending onk) on
|ω̃`(k) − ω`(k)| for k satisfying|k| ≤ kM . Subject to this bound, the numerical parameters
are then chosen to maximize efficiency (or possibly convenience). The case when this choice
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can be made independently ofε is of interest, as then we are assured that the performance
of the method does not seriously deteriorate asε → 0.

By choosing a maximum wavenumber of interest, we accept that Fourier components of
the initial data with larger wavenumbers may be badly mispropagated. This acceptance as-
sumes that these Fourier components do not grow significantly in the numerical simulation.
Thus, we generally require that the method be stable for the full range of wavenumbers
representable on the numerical grid. In our formulation this kind of stability corresponds
to Im(ω̃(k)) ≤ 0 for |k| ≤π/1x. Because solutions of (1.1) are often decaying in time, a
stronger condition may be needed to ensure that the decaying solution of interest is not
swamped by high wavenumber components that spuriously decay more slowly. Specific
criteria will depend on the problem of interest.

Zero Wavenumber Analysis

Whenk = 0 we are considering the evolution of constant initial data governed by the
system of ODEṡu + ε−1Bu= 0. Hence, the dispersion relation of a numerical method at
k = 0 is a reflection of the quality of the ODE solver embedded in the method. Because our
method is exact for polynomial data of order 2P or less (which includes constant data), we
haveω̃`(0) = ω`(0) regardless of the value of1t andε. In sharp contrast, when finite-order
time differencing is used, say of orderd, ω̄`(0) − ω`(0) = O(µ`1td/εd+1), whereµ` is the
`th eigenvalue ofB. Thus methods based on finite-order time differencing require1t/ε
to be small to ensure accuracy atk = 0. We note, however, that in many applications it is
common forµ` to vanish for several values of`. For solutions dominated by these branches,
finite-order time differencing is not so severely handicapped. An example of this situation,
the Debye model, is considered in the next section.

Small Wavenumber Asymptotics

A basic property of many standard finite difference methods applied to the caseB = 0
is that their dispersion relations substantially agree with the dispersion relation of the
hyperbolic system (1.1). This agreement has the form of exact equality of the first few
Taylor coefficients of the dispersion relations expanded ink aboutk = 0. For example, ¯ω(k)

for the simple scheme

um+1
n − um

n

1t
+ A

um
n+1 − um

n−1

21x
+ ε−1Bum

n = 0 (3.3)

agrees withω(k) to O(k1) whenB = 0 (even though the scheme is unstable). Higher order
methods typically give higher order agreement. This agreement is an expression of the
exceptional suitability of standard finite difference methods for the caseB = 0.

As noted earlier, this agreement evaporates for finite difference methods using finite-order
time differencing whenB 6= 0. For the method of (3.3), ¯ω`(0) − ω`(0) = i log(1− µ`1t/ε)/
1t + i µ`/ε. Whenµ` = O(1), ω̄`(0) andω`(0) are approximately equal only when1t/ε
is small. In the following, we show that the method of (2.7) preserves agreement between
all branches of the numerical and model dispersion relation at small wavenumbers when
B 6= 0; typically, ω̃`(k) − ω`(k) = O(k2P+1).

Reformulation ofω(k)

Reformulating the eigenvalue problem forω(k) to more closely resemble that for ˜ω(k)

simplifies comparison of these dispersion relations. The exact update operator (AI.5) has
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solutions of the formu(x, t) = vei (kx−ωt); hence,Ĥv = e−i ω(k)1tv, where

Ĥ(k) =
∞∑

q=0

Wq(ik)q. (3.4)

Convergence is ensured by (2.12) or the observation thatĤ(k) = exp[−(i Ak + ε−1B)1t ].

Eigenvalue Perturbation Problem

We have characterizedω`(k) andω̃`(k) in terms of the eigenvalues of̂H(k) andM̂(k).
Our strategy for showing that|ω̃`(k) − ω`(k)| is small is based on demonstrating that
‖Ĥ(k) − M̂(k)‖ is small. AssumingB is diagonalizable, we show that for any wavenumber
cutoff kM and any constantC > 0 we can ensure

‖Ĥ(k) − M̂(k)‖ ≤ Ck2P+1 for |k| ≤ kM (3.5)

with proper choice of1t and1x. Moreover, this choice can be made independently ofε.

Estimation of the Matrix Perturbation

To begin the derivation of (3.5), we recall thatez can be written as the sum of its Taylor
polynomial of degree 2P and a remainderR2P(z)—a holomorphic function satisfying
|Rd(z)| ≤ zd+1e|z|/(d + 1)! for all complex values ofz. Applying this decomposition to the
definition of D̂q(k), found in (3.2), gives

D̂q(k) =
∑

p

Dqp eik1xp = (ik)q +
∑

p

DqpR2P(ik1xp), (3.6)

where we have used the relation
∑

p Dqp(p1x)` = `!δq`, which follows from the definition
of the Dpq’s in terms of the inverse of the Vandermonde matrixV . Thus,

M̂(k) − Ĥ(k) =
2P∑

q=0

Wq

∑
p

DqpR2P(ik1xp) −
∞∑

q=2P+1

Wq(ik)q. (3.7)

We note that there is a constantK depending only onP such that
∑

p |Dqp| ≤ K/|1x|q.
Assuming the CFL condition1t ≤ P1x, we apply the bound on‖Wq‖ given in (2.12) and
the bound on the remainderR2P to (3.7) to obtain

‖M̂(k) − Ĥ(k)‖ ≤ κ(0B)(|k|1x P)2P+1

(2P + 1)!

[
Keκ P+|k|1x P + κ2P+1eκ P1x|k|]. (3.8)

This bound is independent ofε and applies for all values ofk. Moreover, givenC > 0 and
kM < ∞ we can obtain the estimate (3.5) by appropriate choice of1x (which constrains
the choice of1t through the hypothesized CFL condition).

Estimation of the Eigenvalue Perturbation

To estimate|ω(k) − ω̃(k)| using (3.8), we make use of a result of matrix perturbation
theory that bounds the perturbation in the eigenvalues given a bound on the perturbation in
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the matrix (see [13, Thm. 6.3.2]): LetF andE be square matrices (with0−1
F F0F diagonal)

andλ∗ be an eigenvalue ofF + E; then there is an eigenvalueλ of F such that

|λ∗ − λ| ≤ κ(0F )‖E‖, (3.9)

whereκ(0F ) = ‖0F‖‖0−1
F ‖ is the condition number of the matrix of eigenvectors ofF .

WhenF is not diagonalizable, we defineκ(0F ) = ∞. Application of (3.9) with (3.5) gives

|ω̃`(k) − ω`(k)| ≤ min(κ(0M̂), κ(0Ĥ ))Ck2P+1 for |k| ≤ kM , (3.10)

where0M̂ and0Ĥ are the matrices of eigenvectors forM̂ andĤ , respectively.

Implications for Numerical Errors

WhenB is diagonalizable,M̂(0) = Ĥ(0) = exp(−B1t) is also. Thus,κ(0M̂) andκ(0Ĥ )

are bounded as functions ofk is some neighborhood ofk = 0. Hence,|ω̃(k) − ω(k)| =
O(k2P+1) for small k. In applications where the components of the solution with larger
wavenumbers rapidly decay in time, this result indicates that the long-time solution com-
puted using this numerical method will be highly accurate especially for larger values ofP
(assuming that theDpq’s have been accurately computed).

BecauseC = O(1x2P+1), we are tempted to characterize the method asO(1x2P+1). For
many practical purposes this characterization is indeed correct. There are some situations,
probably not very significant in applications, where this characterization is technically inac-
curate. These exceptional situations arise through the dependence ofM̂ on1x. Specifically,
there may be wavenumbers for which min(κ(0M̂), κ(0Ĥ )) is not bounded as1x → 0. Since
min(κ(0M̂), κ(0Ĥ )) ≤ κ(0Ĥ ), this consideration is necessary only at those discrete values
of k for which Ĥ(k) is nondiagonalizable. LetJ1, J2, . . . , JL be open intervals containing
the wavenumbersk where Ĥ(k) is nondiagonalizable. It follows that(ω̃` − ω`)/1x2P+1

is uniformly bounded on [−kM , kM ] − ∪L
`=1 J̀ . The practical implication is that the error

in the method isO(1x2P+1) when we can neglect the components of the solution hav-
ing wavenumbers near those makingĤ(k) nondiagonalizable. Other methods, such as the
FDTD method, suffer a similar diminished performance at these wavenumbers.

4. NUMERICAL AND MODEL DISPERSION RELATIONS FOR THE DEBYE MODEL

This section focuses on an important example of (1.1), the Debye model for dispersive
dielectric media. The Debye model has the form of (1.1) with

A =
0 1 0

1 0 0
0 0 0

 and B =
0 0 0

0 a −b
0 −a b

 , (4.1)

wherea and b are positive constants satisfyinga + b= 1. The dispersion relations for
the model, for the EPd method and for a standard FDTD method, are considered and
compared. A similar but abbreviated comparison of the EPd method with a method based
on Strang splitting is found in Appendix III. Our analysis suggests that the EPd method
offers significant improvements in efficiency and accuracy over standard FDTD approaches
to the Debye model.
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FIG. 1. The real and imaginary parts of the three branches of the dispersion relation for the Debye model
with b= 0.01.

Dispersion Relation for the Debye Model

The dispersion relationω(k) for the nondimensionalized Debye model given in (4.1)
satisfies the cubic equation

ω2(ω + i /ε) − k2(ω + ib/ε) = 0. (4.2)

Two branches ofω(k), denotedω+(k) andω−(k), correspond to forward and backward
propagating waves. Since the Debye model is invariant under reversal of the spatial coordi-
nate, Re(ω+) = −Re(ω−) and Im(ω+) = Im(ω−). The third branch, denotedω0(k), whose
real part vanishes at all wavenumbers, corresponds to nonpropagating disturbances that
decay exponentially in time at a wavenumber-dependent rate.

Figure 1 shows the real and imaginary parts of the dispersion relation withb= 0.01, a
value approximately corresponding to parameter values used for water in the microwave
regime (e.g., in [2] we findb= 0.0123). The upper panel of this figure shows only the
real part ofω+. The dispersion relation for the Debye model has a substantial amount of
structure including singularities at the points markedα andβ. These points, associated with
double roots of (4.2), are

α =
√

b[1 − b − b2 + O(b3)] and β = 1

2
[1 + b + 2b2 + O(b3)]. (4.3)

Expanding the three branches of the dispersion relation for small wavenumbers gives

εω± = ±
√

b(εk) − i
1 − b

2
(εk)2 ∓ (1 − 5b)(1 − b)

8
√

b
(εk)3

− i
(1 − 2b)(1 − b)

2
(εk)4 + O((εk)5), (4.4a)

εω0 = −i + i (1 − b)(εk)2 + i (1 − 2b)(1 − b)(εk)4 + O((εk)6). (4.4b)
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The very low wavenumber behavior of the dispersion relation for the propagating branches
is that of the convection diffusion equationwt ± √

bwx = 1
2ε(1− b)wxx. Petropoulos [14]

observes that this PDE governs the long-time behavior of the Debye model because all
components of the solution, except those associated with the low wavenumber portions of
the propagating branches, decay with anO(ε−1) exponential rate.

Forα < εk < β all branches ofω correspond to nonpropagating modes. On this interval
the notationsω± andω0 are somewhat inappropriate; the branches are better classified in
terms of the rate of decay associated with them. For many applications these modes are of
little interest because they do not propagate.

For large wavenumbers, the phase velocity of the propagating branches converges to
unity and the associated modes decay like exp[−t (1− b)/(2ε)]. The nonpropagating mode
decays like exp[−tb/ε].

Small Wavenumber Analysis of Method Dispersion Relations

For the EPd method, the eigenvalue problem,̂M ṽ = e−i ω̃1t ṽ with M̂ given in (3.1),
determines the dispersion relation ˜ω. In the caseP = 1, emphasized in this section,̂M can
be derived explicitly by applying (AII.7) to (3.2). Explicit formulations of the eigenvalue
problem for the dispersion relation ¯ω of the FDTD method of [5] are given in [2, 7]. In
this section, we restrict our analysis to the case1t = 1x. This is the usual situation as a
unit Courant number is generally used to minimize numerical dispersion [2]. The analysis
is presented in terms of the parameterh = 1t/ε. Discrepancies between the dispersion
relations of the model (ω) and a numerical method ( ˜ω or ω̄) indicate the magnitude and the
nature of errors that the method introduces. Formulas for the small wavenumber behavior
of ω̄ andω̃ facilitate comparison with the model dispersion relationω,

εω̄± − εω± = − (1 − b)
√

bh2

24
(εk)3 + i

(1 − b)(1 − 3b)h2

24
(εk)4 + O((εk)5), (4.5a)

εω̄0 − εω0 = − i 12h2F1(h) − i
(1 − b)(1 − 3b)h2

12
(εk)4 + O((εk)6), (4.5b)

εω̃± − εω± = − (1 − b)
√

bh3

24
F2(h)(εk)3 − i

(1 − b)bh3

24
F3(h)(εk)4 + O((εk)5), (4.5c)

εω̃0 − εω0 = i
(1 − b)bh3

12
(εk)4 + O((εk)6), (4.5d)

where

F1(h) = 12
log[(2 + h)/(2 − h)]/h − 1

h2
, (4.6a)

F2(h) = 24
e−h − (1 − h + 1

2h2 − 1
6h3
)

h4
, (4.6b)

F3(h) = 12

[
1 + (1 + b)h + 1

4h2
]
e−h − [1 + bh − ( 1

4 + b
)
h2 + 1

2

(
1
6 + b

)
h3 − 1

4bh4
]

bh4
.

(4.6c)

To leading order each of theF ’s equals one:F1(h) = 1+ O(h2), F2(h) = 1+ O(h),
and F3(h) = 1+ O(h). The leading order error in the propagating modes,|ω̃± − ω±| and
|ω̄± − ω±|, is O(k3h3) for the EPd method andO(k3h2) for the FDTD method. The leading
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order error in the nonpropagating mode,|ω̃0 − ω0| and|ω̄0 − ω0|, is O(k4h3) for the EP2

method andO(k0h2) for the FDTD method. That the error in the FDTD method enters
at such low order ink for the nonpropagating mode indicates that it treats this mode
very inaccurately; nonetheless, for many applications this is of little significance because
the nonpropagating mode decays very rapidly. Hence, we focus on the performance of
the methods for the propagating modes. For the propagating mode, the low wavenumber
asymptotics suggest the principle difference between the methods is that the EP2 method is
better than the FDTD method by a factor ofh.

Order One Wavenumbers with P= 1

To see the extent that this behavior persists for order one values ofεk, we defineC̃(εk, h)

andC̄(εk, h) by

Re[εω̃±(εk, h) − εω±(εk)] = − (1 − b)
√

b

24
C̃(εk, h)(εk)3h3, (4.7a)

Re[εω̄±(εk, h) − εω±(εk)] = − (1 − b)
√

b

24
C̄(εk, h)(εk)3h2. (4.7b)

If C̃ andC̄ were uniformly bounded for all wavenumbers of interest ash → 0 then the
phase error of the EP2 method would indeed beO(h3), while the phase error of the FDTD
method would beO(h2). The scaling chosen gives̃C(0, 0) = C̄(0, 0) = 1. Numerical com-
putation ofC̃ and C̄ for values ofh tending to zero indicates that these functions tend
to limiting functions,C̃(εk, 0) andC̄(εk, 0), ash → 0. With a = 0.99 andb= 0.01, nu-
merical approximations of the logarithm of the absolute value of the limiting functions,
log|C̃(εk, 0.02)| and log|C̄(εk, 0.1)|, are plotted in Fig. 2. Different values ofh are used
in these two plots to obtain reasonable approximations of the limiting curve while min-
imizing the effects of round-off error. A difference in the nature of round-off errors is
expected as̃C is computed through division byh3 while C̄ is obtained through division by
h2. Computations with values ofh ranging fromh = 1.0 to h = 0.001 indicate these both
reasonably represent the limiting functions. Plots for smaller values ofh are not shown
because large numerical errors resulting from round-off distort these plots. The effect of
these errors can be seen in Fig. 2 for small values ofkε. Numerical sampling and the finite

FIG. 2. Numerical approximations of the limit functions, log|C̃(kε, 0) and log|C̄(kε, 0)|, showing the nature
of the phase error for small values ofh.
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values ofh make the cusps shown in Fig. 2 finite; numerical evidence suggests that actually
C̃(α, 0) = C̃(β, 0) = C̄(α, 0) = C̄(β, 0) = ∞. Thus, neitherC̃ norC̄ is uniformly bounded.
Nonetheless, Fig. 2 suggests thatC̃ andC̄ are uniformly bounded on [0, 1] − (Jα ∪ Jβ),
whereJα and Jβ are open intervals containing the points of singularityα andβ, respec-
tively. The nonuniformity of convergence nearα andβ arises from differences between the
location of the singularities in dispersion relations for the model and the numerical methods.
Figure 2 suggests that this mislocation is less severe for the EP2 method than for the FDTD
method. Moreover,C̃ is quite small for larger values ofεk. The analogous study of the
imaginary part yields similar results. The practical conclusion of these considerations is
that, applied to the Debye model with waves not having a significant amount of energy in
wavenumbers nearα/ε or β/ε, the phase error in the EP2 method isO(h3) while that in
the FDTD method isO(h2).

Phase Error for Various Values of P

Seeking to confirm the general analysis of Section 3 for the Debye model withP > 1, we
compute the dispersion relationsω andω̃ by numerical solution of the eigenvalues problems
for Ĥ and M̂ with a = 0.99 andb= 0.01. The comparison of the numerically computed
values ofω andω̃ is made somewhat difficult by the extreme smallness of ˜ω − ω for smaller
values ofh; that is, for larger values ofP and modest values ofh, ω̃ − ω vanishes to machine
accuracy (standard double precision). Of course, the difficulty of distinguishing ˜ω − ω from
zero in finite precision arithmetic reflects the very high level of accuracy of the EPd method.
With εk < α, no meaningful difference between ˜ω andω is found for values ofh < 5.0. In
this wavenumber regime, solutions generated by the EPd method using as few as six grid
points per wavelength are expected to proceed at near machine accuracy.

For εk > β, a small discrepancy between ˜ω andω can be found numerically. Figure 3
is a log–log plot of the real part of ˜ω − ω versush with εk = 1.0. We examine this graph
to determine the degree to which it agrees with the result of the previous section that
the EP2P method hasO(h2P+1) error for smallh. We suppose that ˜ω − ω goes to zero
as hηp and use the values of ˜ω − ω computed forh ∈ [0.2, 1.0] to estimateηP; we find
η1 = 3.96, η2 = 5.92, η3 = 7.87, η4 = 9.83, andη5 = 11.8. For P > 1, these values indicate
rates of convergence almost one order better thanO(h2P+1). We do not interpret these
results as saying that the method performs better than the theoretical predictions. Rather,
we believe that the rate of convergence decreases when ˜ω − ω is examined for smaller

FIG. 3. Numerically computed values of the phase error,|Re(ω̃ − ω)|, versush for several values ofP and
εk = 1. Forh < 0.1 andP ≥ 2, the computed error is virtually zero to machine accuracy.
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values ofh. For P = 1, this hypothesis has been verified. ForP > 1, verification has not
been performed due to our inability to distinguish ˜ω − ω from zero in double precision
arithmetic. Figure 2 foreshadowed this result, as the coefficientC̃(1, 0.02) seems to be
very small. That the attempt to confirm the theoretical error estimates for the EPd method
numerically falls prey to round-off error in this way demonstrates that for larger values of
P the method can be expected to perform near machine accuracy. Actual errors expected
in computations using the method should generally be dominated by round-off error rather
than discretization error.

Performance for1t/ε À 1

One potential application for the method of this paper is numerical computation in the
regime where1t/ε À 1. Numerical experiments with the Debye model (a = 0.99 and
b= 0.01) indicate roughly the same accuracy for the FDTD method and for the EP2 method
in the limit ε → 0 with 1t held constant. This result is consistent with the low wavenumber
analysis of the dispersion relation obtain from (4.5a) and (4.5c) in the limitε → 0:

ω̄± − ω± = 1

4
(ω̃± − ω±) = − (1 − b)

√
b1t2

24
k3. (4.8)

Both methods haveO(1t2) errors for the Debye model whenε → 0. A similar analysis
for simple Strang splitting indicates largeO(1t) errors (see Appendix III). Although this
example suggests the EPd method offers no advantages over the FDTD method when
1t/ε À 1, a closer examination reveals situations where the EPd method gives superior
performance in this regime.

The key to identifying these situations is the observation that the errors reported in (4.8)
appear to be due to grid dispersion associated with a lack of alignment of the characteristics
of the limiting model with the grid{(xn, tm)}; that is, we cannot expect any method using
the EP2 or basic FDTD stencils to give significantly better results. To strip away the effects
of grid dispersion, we make comparisons in a case where the limiting characteristics are
aligned with the mesh. Such a case is the Debye model witha = 3/4 andb= 1/4; the
limiting speed is

√
b= 1/2. With 1t = 21x and P = 2, the characteristics of the limiting

solution are aligned with the grid, and numerical computations of the update matrices for the
EP4 method strongly indicate that they converge to the update matrices of an exact method
whenε → 0 and1t and1x are fixed. Moreover, numerical computation of the dispersion
relation shows that the method is stable forε ≥ 0.

Aligning the grid with the characteristics of the FDTD method without violating the CFL
condition may require widening the spatial stencil, which can be done in more than one
way. One such extension of the FDTD method has the form

um+1
n − um−1

n

21t
+ A

∑
j

w j u
m
n+ j + B

um+1
n + um−1

n

2ε
= 0, (4.9)

where thew j ’s are scalars defining a finite difference approximation for the spatial deriva-
tive. The FDTD method is usually implemented on a staggered grid to take advantage of
the structure ofA and B; however, this transformation to a staggered grid for the sake of
efficiency does not affect the analytical properties of the method.
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In the limit ε → 0, the general solution of the Debye model is

u(x, t) = (
√

b, b, a)t f (x −
√

bt) + (−
√

b, b, a)t g(x +
√

bt). (4.10)

Assuming that1t = 21x, it can be shown that the limiting form of (4.9) supports these
solutions if and only ifw1 = 1/21x, w−1 = −1/21x, andw j = 0 for j /∈ {−1, 1}. Hence,
within this extended FDTD framework, there is a unique set ofw j ’s that gives an exact
method in the limitε → 0. With thesew j ’s, however, the method is unstable forε > 0. The
origin of the instability is that with thesew j ’s waves travel at a speed of no more than 1/2 in
the numerical computations, while the maximum signal speed of the model is 1. Hence, it
is impossible for the numerical computations to converge to the solution of the hyperbolic
system no matter how fine the mesh is made.

For the Debye model witha = 3/4 andb= 1/4, we find that both the EPd and FDTD
approaches can provide methods that converge to an exact method in the limitε → 0. For
ε > 0, the EPd method is stable, but the FDTD method is unstable. The failure of the FDTD
approach to provide a stable method converging to an exact method in the limitε → 0 seems
to stem from the rigidity of having thew j ’s set independently ofε. In any case, this example
demonstrate that there are situations where the EPd method offers significant advantages
over the FDTD method for computation in the regime1t/ε À 1.

5. EXTENSION FOR MATERIALS WITH SMOOTH INHOMOGENEITIES

In the applications to electromagnetics motivating this work, the electrical properties
of materials are generally encoded in the matrixB, and these properties typically vary in
space. Hence, we are interested in extending the EPd method to the case of inhomogeneous
materials whereB depends onx. Here we limit attention to situations whereB is a relatively
smooth function ofx.

WhenB is a constant matrix and the initial data are a polynomial, we have seen that the
solutions of (1.1) are polynomials with time-dependent coefficients. Because this structure
is lost whenB depends onx, there is some ambiguity in generalizing EPd to the inhomo-
geneous case. One approach is to use the method that advances polynomial data of degree
d exactly for a single time step. A second approach is based on having solutions of the
form of power series with time-dependent coefficients whenB is analytic. The approach
we consider here is based on the recursion relation given in (AI.7) and (AI.9).

An Extension for Inhomogeneous Materials

For simplicity we consider only the caseP = 1; that is, for each pointxn in the spatial grid,
we seek matricesM−1(n), M0(n), andM1(n) that are to be used to update the solution at that
gridpoint. That a separate set of update matrices may be needed for each gridpoint implies
that memory limitations and the cost of generating the update matrices will be significant
considerations in implementations. To generate the update matrices for a meshS0 with
grid spacing1x we use a collection of refined meshesS1, S2, . . . , ST , each having grid
spacings one-half of the one before. On the finest meshST update matrices are generated at
each gridpointxj assuming thatB(x) = B(xj ); that is, the formulas for generating update
matrices in the homogeneous case, (2.7) and (2.9), are used with the material properties
found atxj . The recursion formula given in (AI.7) and (AI.9) is then applied to generate
the update matrices for the coarser meshes including the mesh of interestS0.
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We note a few of the properties of the method generated by this algorithm. IfB is a
constant the algorithm produces the original EP2 update matrices as defined by (2.8) and
(2.9) on the coarsest gridS0. In general, the update matrices on the coarse gridMp(n) depend
on the values ofB(x) for values ofx ∈ {xn + `1x/2T : ` = −2T , 1− 2T , . . . , 2T − 1, 2T }.
The computational effort needed to generate the update matrices on the coarse grid is
proportional to 2T . The computation can be arranged to avoid storing the update matrices on
the fine grids; hence, the memory required to generate the method is essentially that needed
to store the update matrices for the coarse grid. We limit our analysis of this algorithm to a
numerical example.

A Numerical Example

In our example, a pulse is scattered from a material inhomogeneity surrounded by free
space. We study the error in the transmitted wave at a certain point in space-time as a function
of the numerical parameters, the grid spacing1x and the truncation levelT . As before,
1t = 1x. The initial data in the experiment areu(x, 0) = 256(x − 1)4(x − 2)4(1, 1, 0) for
x ∈ [1, 2] andu(x, 0) = 0 for x /∈ [1, 2]. These initial data give rise to a purely rightward
propagating pulse which impinges on an inhomogeneity supported on the interval [3, 4].
The inhomogeneity is a Debye material (a = 0.99 andb= 0.01) where spatial variations
enter throughε: 1/ε(x) = 2560(x − 3)4(x − 4)4.

We determined the numerically computed estimates of the first component ofu(5, 2.7)
for 45 combinations of the numerical parametersT and1x. Specifically, we use all com-
binations whereT ∈ {4, 6, 8, 10, 12} and1x ∈ {0.1×2−n | n = 0, 1, 2, 3, 4, 5, 6, 7, 8}. The
numerically computed values of the first component ofu(5, 2.7) are very nearly given by

0.183102359+ 0.212

2T
1x − 0.003251x2 − 0.08191x3 − 4.61x4. (5.1)

Using the FDTD method for the same problem and values of1x results in numerically
computed estimates of first component ofu(5, 2.7) very nearly given by

0.183102359− 2.561x2 + 2.041x3 − 77.91x4. (5.2)

Figure 4 shows both the numerically computed values and curves given by (5.1) and (5.2).
For the purposes of our discussion these formulas are an excellent characterization of the
numerically computed values.

Interpretation of the Numerical Experiments

The main result from these experiments is that for practical values of1x, the estimate of
the first component ofu(5, 2.7) given by the extension of the EPd method is far better than
the estimate given by the FDTD method. As shown in Fig. 4, the accuracy of the extended
EPd method is better than that of the FDTD method when1x > 0.01 even whenT = 4.
For the larger values ofT the extended EPd method gives a more accurate estimate than
the FDTD method for1x = 0.000390625—the smallest value of1x considered in this
experiment. The practical point here is illustrated by the observation that using the EPd

method withT = 12 and1x = 0.1 the solution is accurate to three decimal places, while
the FDTD method requires a mesh refined by a factor of eight to obtain the same accuracy.
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FIG. 4. Convergence of the numerically computed magnetic field values atx = 5.0 andt = 2.7 for extensions
of the EPd method and the FDTD method. The solid lines are the fitted formulas given in (5.1) and (5.2).

The significant difference in the accuracy of the methods is reflected in the three-orders-
of-magnitude disparity between the coefficients of the quadratic terms in (5.1) and (5.2).
Although this analysis examines but a single point in the solution of a single example, it
suggests that the extended EPd method potentially offers substantial advantages for practi-
cal computations which are typically run on grids having less than one hundred gridpoints
per wavelength.

Comparisons of Resource Requirements

The advantages of using coarser grids than the FDTD method normally allows are partially
offset by the additional resource requirements of the extended EPd method. The amount of
memory used per gridpoint is larger for the extended EPd method due to the need to store
separate update matrices for each gridpoint in the inhomogeneity. The number of arithmetic
operations needed to update the solution at a gridpoint is greater by roughly a factor of two.
Most significantly, the cost of generating the update matrices is substantial for the extended
EPd method (more than 27× 2T matrix multiplications per gridpoint) but negligible for
the FDTD method. But we emphasize that this cost is paid only once, and not at each time
step. Moreover, once the method has been generated for a given material configuration, it
can be used repeatedly for different initial data. Nonetheless, more efficient algorithms for
generating the update matrices are needed.

Further Extensions

Because the derivation of the recursion relation given in (AI.7) and (AI.9) assumes that
the fields have a polynomial structure in space, we do not expect this extension to perform
well in situations where the spatial structure of the fields is not approximated well by a lower
order polynomial. This occurs when there are sharp gradients in the material properties. In
the extreme case of a jump discontinuity in the material properties, the extension of the EPd

method considered here fails to converge when1x → 0. The development of alternative
extensions is needed for the treatment of material interfaces.
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The extension of the basic EPd method to hyperbolic systems in several spatial variables
is straightforward. However, the simple fact that the number of gridpoints neighboring a
given point scales as the radius of the neighborhood to the power of the spatial dimension
magnifies some of its disadvantages in more than one spatial dimension. Because the number
of update matrices associated with a gridpoint equals the number of neighboring gridpoints,
the memory requirements for storing these matrices can be substantial. Moreover, since
the update procedure involves multiplying each of these update matrices by a vector, the
computational cost of applying the method grows rapidly with the stencil radius. Of course,
the hope is that the ability to compute accurate solutions on meshes with dramatically fewer
grid points will overcome the somewhat high cost in memory and computation associated
with each gridpoint.

6. SUMMARY AND COMMENTS

Summary

The reported need [2] for very fine meshes to resolve microwave pulses propagating in
water motivated the development of the EPd method for the stiff dispersive waves equa-
tion (1.1). From the point of view that fine meshes are needed because of the stiff system of
ODEs,u̇ + ε−1Bu= 0, embedded in the problem, we are naturally drawn to consider how
to incorporate the exact solution of this system of ODEs, exp(−Bt/ε)u(0), into a method
for (1.1). Our development of the EPd method stems from considering the action of the
Green’s function on interpolating polynomials. Four alternative formulations of the EPd

method (Appendix I) provide information useful for its analysis and suggest approaches
for its generalization. A defining characteristic of the EPd method is that it is exact when
applied to polynomial initial data of degreed. Our general analysis of the PEd method is
based on comparing its dispersion relation with that of the model solution to be simulated
numerically. This comparison shows that in the generic case the EP2P method has errors
that areO(1x2P+1k2P+1) for 1x andk small. In the case of the Debye model, a fuller anal-
ysis, including comparisons with the FDTD method and Strang splitting (Appendix III),
is available owing in part to explicit represtation of the EP2 method (Appendix II). This
analysis demonstrates advantages of the EPd method over both the FDTD method and
Strang splitting for both large and small values ofh = 1t/ε and confirms the expectation
that very high accuracy can be achieved on practical meshes particularly withP > 1. For
media with smooth inhomogeneities (B a smooth function ofx), an extension of the EP2

method is defined and compared to the FDTD method in an example. For meshes with
practical grid spacing, the extension gives significantly better performance than the FDTD
method.

Mitigation of Stiffness

The EPd method is intended to mitigate the effects of stiffness in numerical simulations
of the solutions of (1.1) whenε is small. For methods such as the FDTD method, obtaining
accurately computed solutions often requires that the time step1t be small compared with
ε. This restriction on1t easily leads to a prohibitively large requirement for computa-
tional resources when the desired computation time is large compared toε. Our detailed
considerations are limited to the Debye model. In the regime1t/ε ¿ 1, the EP2 method
relieves the effects of stiffness, allowing larger time steps than for the FDTD method; that
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is, even though we suppose1t ¿ ε, the time step need not be as small as for the FDTD
method to achieve the same level of accuracy. In the regime1t/ε À 1, the error for both the
FDTD method and the EP2 method are bounded independently ofε with 1t = 1x fixed.
However, in an example where the grid is aligned with the characteristics of the limiting
wave equation, we show that the error for the EPd method can go to zero withε. This result
is not possible with the FDTD method without loss of stability forε > 0. Hence, we have
shown that there are situations where the EPd method gives better performance than the
FDTD method when1t À ε. A more complete characterization of these situations and a
fuller assessment the quality of the EPd method in these situations are needed.

Extensions of the EPd Method

Our presentation focuses on the EPd method for homogeneous materials in one spatial di-
mension. Naturally, these considerations are intended to form the foundation for extensions
treating inhomogeneities, interfaces, and several spatial dimensions. One of several possible
extensions to smoothly varying inhomogeneous materials is introduced in Section 5. Al-
though analysis is limited to a numerical example, the potential of the extension to provide
highly accurate solutions on relatively coarse grids is clear. More general analysis of the
possible extensions to inhomogeneous materials is needed. Equally important is the need
for algorithms that efficiently generate the update matrices for these extensions. Although
interpolation by multivariate polynomials presents some complications, generalization of
the EPd method to several spatial dimensions is straightforward. For homogeneous materi-
als, much of the analysis of Section 3 generalizes to several spatial dimensions as well. For
large gradients in the material properties including material interfaces the proper generiza-
tion of the EPd method is less obvious. Seeking a quadrature formula for the representation
of the update operator in terms of the Green’s function seems an attractive approach. The
major change is that we can no longer expect the spatial structure of the fields to be locally
approximated by polynomials. To be acceptable, an alternative representation of this spatial
structure must give rise to an accurate quadrature formula that can be incorporated into the
general method without undue difficulty or cost. With the ability to handle both smooth and
discontinuous inhomogeneities in several spatial dimensions, the EPd method could serve
as the basis for a general purpose code for simulating linear waves.

Computational Resources

The generization of the EPd method to inhomogeneous materials in several spatial di-
mensions places two substantial burdens on computational resources: (1) Generation of the
update matrices requires a very significant amount of arithmetic. (2) Storing the update
matrices during a simulation is the dominant memory requirement of the method. In this
paper the main approach to generating update matrices is based on (2.9), which requires the
exponentiation of a large matrix. Even for inhomogeneous materials the matrix is highly
structured. Exploiting this structure in the matrix exponentiation seems a very promising
approach to easing the burden of computing the update matrices. The alternative approach
to generating the update matrices, based on the recursion formula given in (AI.7) and (AI.9),
has the unpleasant property that the amount of arithmetic needed roughly doubles with each
application of that formula. The potential for dramatically improving the efficiency of this
algorithm is obvious. The memory needed to store the update matrices is substantial. For
electromagnetics problems in three spatial dimensions the memory requirements for the
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update matrices could easily exceed those for the fields by a factor of one hundred. In con-
trast, the storage requirements of the FDTD method are often little more than the memory
needed for the fields. Maintaining memory parity between the methods requires that the
grid spacing of the EPd method must be about a factor of five larger than that of the FDTD
method. We note, however, that for many problems the memory requirements of the EPd

method can be substantially reduced. When there are large regions in the simulation domain
where the material properties are constant, most of the gridpoints within such a region can
share a single set of update matrices. Taking advantage of this structure can dramatically
reduce both the cost of generating the update matrices and the memory needed to store
them. Issues concerning computational resources will necessarily play an important role in
the future development of the EPd method.

APPENDIX I

Alternative Formulations of the EP2P Method

Four alternative formulations of the EP2P method provide useful information for its
analysis and paths for its extension.

Local Polynomial Interpolation

This procedural formulation closely resembles that of the previous section except instead
of using the Green’s function to propagate the interpolating polynomial we use a system
of ODEs describing the evolution of its coefficients. We use three steps to determineum+1

n

from um
n−P, . . . , um

n+P: (1) Find the interpolating polynomial (2.2). (2) Use this polynomial
as initial data and solve (1.1) exactly. (3) Evaluate this solution att = 1t and x = xn to
obtainum+1

n . The second step is accomplished using the observation that with polynomial
initial data the solution of (1.1) is a polynomial whose coefficients evolve according to the
system of ODEṡaq + Aaq+1 + ε−1Baq = 0.

Limit of Finite Difference Methods

Truncation of Taylor series is a standard approach to generating finite difference methods.
We obtain (AI.1a) by truncating the Taylor series foru(x, t + 1t) after T + 1 terms and
using (1.1) to substitute space derivatives for time derivatives. Expanding(A∂/∂x + B)` as
a polynomial in∂/∂x gives (AI.1b). Reversing the order of summation yields (AI.1c):

T∑
`=0

1

`!

∂`u

∂t`
(x, t)1t` =

T∑
`=0

(−1)`

`!

(
A

∂

∂x
+ ε−1B

)`

u(x, t)1t` (AI.1a)

=
T∑

`=0

(−1t)`

`!

∑̀
q=0

Z`q
∂qu

∂xq
(x, t) (AI.1b)

=
T∑

q=0

(
T∑

`=q

(−1t)`

`!
Z`q

)
∂qu

∂xq
(x, t). (AI.1c)

Replacing the spatial derivatives by the finite difference approximations represented byDqp
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gives a family of finite difference methods indexed byT andP:

um+1
n =

min(T,2P)∑
q=0

(
T∑

`=0

(−1t)`

`!
Z`q

)
P∑

p=−P

Dqpu
m
n+p. (AI.2)

The primary result concerning this family of methods is that for a fixed value ofP the
method given in (AI.2) converges to the EP2P method asT → ∞ (with the corresponding
value ofP). A derivation of this result can be based on the following properties of theZ′

`qs:

Z00 = I , (AI.3a)

Z`q = 0 q < 0 orq > `, (AI.3b)

Z`+1q = Z`q−1A + ε−1Z`q B = AZ`q−1 + ε−1BZ`q. (AI.3c)

From these relations,Z`0, . . . , Z`2P can be identified with the first block column ofMq.
This identification, the representation of theWq’s as the first block column of exp(−M1t)
given in (2.9), and the Taylor series representation of this exponential give the Taylor
representation ofWq(1t):

Wq(1t) =
∞∑

`=0

(−1)`

`!
Z`q1t`. (AI.4)

Applying (AI.4) to (AI.2) and comparing with (2.7) confirm that the method defined in (AI.2)
converges to the method defined in the previous section whenT → ∞. This characterization
of our method allows us to consider it a finite difference method with a spectrally accurate
time-differencing scheme.

Exact Update Operator as an Exponential

The EP2P method can be derived from the formal exponential representation of the update
operator. The exact update operator for (1.1), in terms of an exponential, is formally given
by

u(x, t + 1t) = e−(A(∂/∂x)+ε−1B)1t u(x, t) (AI.5a)

=
∞∑

`=0

(−1)`

`!

(
A

∂

∂x
+ ε−1B

)`

1t`u(x, t) (AI.5b)

=
∞∑

q=0

Wq(1t)
∂qu

∂xq
(x, t), (AI.5c)

where we have made use of (AI.4) to obtain (AI.5c). The EP2P method can be obtained
from this representation of the exact update operator by replacing the spatial deriva-
tives (∂q/∂xq) in (AI.5c) by finite difference approximations given in terms of theDqp’s.
This formulation gives a simple characterization of theWq’s as the Taylor coefficients of
exp[−(Az+ ε−1B)1t ] expanded inz aboutz= 0.
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Multigrid Interpretation

A multigrid formulation of the EP2P method can be developed based on its characteri-
zation as the only method of the form (2.1) that is exact when applied to polynomials of
degree 2P or less. For simplicity, we restrict our attention to the caseP = 1. We show how
to computeMp(21x, 21t) for p= −1, 0, 1 givenMp(1x, 1t) for p= −1, 0, 1. Iterative
use of this procedure allows us to derive the method for a coarse grid given the method on
a fine grid. The point, of course, is that ordinary finite difference methods give accurate
approximations of the EP2P method on sufficiently fine grids.

Repeated use of (2.1) relatesum+2
n to um

n−2, um
n−1, um

n , um
n+1, um

n+2,

um+2
n = K−2um

n−2 + K−1um
n−1 + K0um

n + K1um
n+1 + K2um

n+2, (AI.6)

where

K p =
∑

`

Mp−`(1x, 1t)M`(1x, 1t) (AI.7)

and Mp = 0 for |p| > P = 1. The update formula (AI.6) is exact when the five values
um

n−2, . . . , um
n+2 are obtained by sampling a quadratic polynomial. Moreover, in this case

um
n−1 andum

n+1 are related to the other three sampled values:

un±1 = 3

4
un + 3

8
un±2 − 1

8
un∓2. (AI.8)

Elimination ofum
n±1 from (AI.6) gives a method for computingum+2

n from the three values
um

n−2, um
n , um

n+2 which is exact when the data is obtained from quadratic polynomials. Since
the method of interest is the only method with this property, we have

M0(21x, 21t) = 3

4
K−1 + K0 + 3

4
K1, (AI.9a)

M±1(21x, 21t) = K±2 + 3

8
K±1 − 1

8
K∓1. (AI.9b)

The case of generalP proceeds similarly. The computations become increasingly tedious as
P increases, but they are easily automated. We note that this formulation is closely related
to an addition formula for theWq’s:

Wq(t1 + t2) =
q∑

`=0

W`(t1)Wq−`(t2). (AI.10)

APPENDIX II

Analytic Expression of the EP2P Method in Special Cases

In three important cases, the matrices defining the EP2P method can be computed ana-
lytically using (AI.4): the case whereA and B commute, the telegrapher’s equation, and
the Debye model for electromagnetic propagation in dielectric materials. For each case,
we derive explicit analytic formulas for the matricesW0, W1, andW2. These formulas are
sufficient to define the method in the caseP = 1, and they allow for more complete analysis
of the method in these special cases.
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Commuting Matrices

WhenA andB commute,AB= B A, we have

e−(Az+B)1t/ε = e−B1t/εe−1t Az. (AII.1)

It follows from (AI.5) that

Wq(1t) = (−1)q

q!
e−B1t/ε Aq1tq. (AII.2)

The Telegrapher’s Equation

The telegrapher’s equation is equivalent to (1.1) with

A =
(

0 1
1 0

)
and B =

(
a 0
0 b

)
, (AII.3)

wherea andb are nonnegative constants satisfyinga + b= 1. Lettingµ = (a − b)/2, we
haveB = 1

2 I + µH , whereH is the 2× 2 diagonal matrix with diagonal elements 1 and
−1. FromA2 = H2 = I andAH + H A= 0 we find

Z`0 = exp

(
−1t

2ε

)(
µ

ε

)`

H `, (AII.4a)

Z`1 = exp

(
−1t

2ε

)(
µ

ε

)`−1

Aχo(`), (AII.4b)

Z`2 = 1

2
exp

(
−1t

2ε

)(
µ

ε

)`−2

H `−2(` − χo(`)), (AII.4c)

whereχo is the indicator function for the odd integers (χo(q) = 1 whenq is odd integer and
χo(q) = 0 otherwise). Letρ = µ1t/ε; summation of (AI.4) yields

W0(1t) = exp

(
−1t

2ε

)
[(coshρ)I − (sinhρ)H ], (AII.5a)

W1(1t) = − ε

µ
exp

(
−1t

2ε

)
(sinhρ)A, (AII.5b)

W2(1t) = ε2

2µ2
exp

(
−1t

2ε

)
[(ρ sinhρ)I + (sinhρ − ρ coshρ)H ]. (AII.5c)

The Debye Model

The Debye model is defined in (4.1). It is easy to confirm thatA3 = A, B AB= 0,

B A2B = aB, andB2 = B. We note that the relationB AB= 0 seems to be characteristic of
models of dielectric materials. From these relations it follows from (AI.3) that

εq Zq0 = B q ≥ 1, (AII.6a)

εq Zq1 = ε(AB + B A) q ≥ 2, (AII.6b)

εq Zq2 = ε2(AB A+ A2B + B A2 + (q − 3)aB) q ≥ 3. (AII.6c)
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Direct summation of (AI.4) yields

W0(1t) = I + B(e−1t/ε − 1), (AII.7a)

W1(1t) = −1t A + ε(AB + B A)

(
e−1t/ε − 1 + 1t

ε

)
, (AII.7b)

W2(1t) = 1

2
1t2A2 + ε2(A2B + AB A+ B A2)

[
e−1t/ε − 1 + 1t

ε
− 1t2

2ε2

]
+ ε2aB

[
−e−1t/ε

(
1t

ε
+ 3

)
+ 3 − 21t

ε
+ 1t2

2ε2

]
. (AII.7c)

It is interesting thatW0, W1, andW2 have nontrivial limiting values whenε → 0+.

APPENDIX III

Comparison with Strang Splitting

When AB 6= B A much of the computational difficulty associated with (1.1) can be
viewed as arising from the failure of the identity exp[−(A∂/∂x + ε−1B)1t ] = exp[−A∂/

∂x1t ] exp[−ε−1B1t ]; that is, the exact update operator forut + Aux + ε−1Bu= 0 is not
the update operator forut + ε−1Bu= 0 followed by that forut + Aux = 0. In such situa-
tions, Strang splitting, which in the simplest case approximates exp[−(A∂/∂x + ε−1B)1t ]
by exp[−ε−1B1t/2] exp[−A∂/∂x1t ] exp[−ε−1B1t/2] to third-order accuracy, is a nat-
ural approach. This approach suggests that the update operator forut + Aux + ε−1Bu= 0
is approximated well by (1) applying the update operator forut + ε−1Bu= 0 for a half time
step, (2) applying the update operator forut + Aux = 0 for full time step, and (3) applying
the update operator forut + ε−1Bu= 0 again for a half time step. A special attraction of
this approach is that the EPd method is exact for bothut + Aux = 0 andut + ε−1Bu= 0 in
many cases including the Debye model. In these case an exact implementation of Strang
splitting in the form (2.7) can be given with

W` = (−1)`

`!
e−B1t/2ε A`e−B1t/2ε . (AIII.1)

For this version of Strang splitting applied to the Debye model, we derive the low
wavenumber asymptotics of the dispersion relation of the method ¯ω:

εω̄± =
√

b(εk) − i
1 − b

2

[
h cosh(h/2)

2 sinh(h/2)

]
(εk)2 + O((εk)3) (AIII.2a)

εω̄0 = −i + i (1 − b)

[
h cosh(h/2)

2 sinh(h/2)

]
(εk)2 + O((εk)4). (AIII.2b)

We compare this with the low wavenumber expansion forω given in (4.4):

εω̄± − εω± = −i
1 − b

24
[h2 + O(h4)](εk)2 + O((εk)3), (AIII.3a)

εω̄0 − εω0 = i
1 − b

12
[h2 + O(h4)](εk)2 + O((εk)4). (AIII.3b)
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Hence, Strang splitting is at bestO(h2) for small h. Moreover, the error isO(k2) rather
than O(k3) as shown in (4.5c) and (4.5d) for the EP2 method and as shown in (4.5a) for
the propagating branches of the FDTD method. However, comparing (4.5b) and (AIII.3b)
shows that Strang splitting treats the nonpropagating branches somewhat better that the
FDTD method.

In the limit ε → 0, we find the dispersion relation for Strang splitting is

ω̄± =
√

bk − i
1 − b

4
1tk2 and ω̄0 = −i + i

1 − b

2
1tk2. (AIII.4)

Thus, in the smallε limit, the error for Strang splitting is no better thanO(1t). These
results are consistent with our numerical experience with broadband pulses in the regime
whereε ¿ 1. In this regime, we find that the dominant error in solutions computed with
the EP2 and FDTD methods is anO(1t2) phase error arising from grid dispersion while
the dominant error in solutions computed with Strang splitting is an amplitude error that
filters out the high wavenumber components of the solution. Even qualitatively correct
numerical solutions can not be obtained in this regime using this simplest version of Strang
splitting without hundreds of gridpoints per wavelength. Despite being exact when applied
to constant initial data, the simplest version of Strang splitting is generally inferior to both
the EP2 and FDTD methods.
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